Cargando…

Locoregional Recurrence Prediction Using a Deep Neural Network of Radiological and Radiotherapy Images

Radiation therapy (RT) is an important and potentially curative modality for head and neck squamous cell carcinoma (HNSCC). Locoregional recurrence (LR) of HNSCC after RT is ranging from 15% to 50% depending on the primary site and stage. In addition, the 5-year survival rate of patients with LR is...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Kyumin, Joung, Joonyoung Francis, Han, Minhi, Sung, Wonmo, Kang, Young-nam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875706/
https://www.ncbi.nlm.nih.gov/pubmed/35207631
http://dx.doi.org/10.3390/jpm12020143
Descripción
Sumario:Radiation therapy (RT) is an important and potentially curative modality for head and neck squamous cell carcinoma (HNSCC). Locoregional recurrence (LR) of HNSCC after RT is ranging from 15% to 50% depending on the primary site and stage. In addition, the 5-year survival rate of patients with LR is low. To classify high-risk patients who might develop LR, a deep learning model for predicting LR needs to be established. In this work, 157 patients with HNSCC who underwent RT were analyzed. Based on the National Cancer Institute’s multi-institutional TCIA data set containing FDG-PET/CT/dose, a 3D deep learning model was proposed to predict LR without time-consuming segmentation or feature extraction. Our model achieved an averaged area under the curve (AUC) of 0.856. Adding clinical factors into the model improved the AUC to an average of 0.892 with the highest AUC of up to 0.974. The 3D deep learning model could perform individualized risk quantification of LR in patients with HNSCC without time-consuming tumor segmentation.