Cargando…
Student’s t-Kernel-Based Maximum Correntropy Kalman Filter
The state estimation problem is ubiquitous in many fields, and the common state estimation method is the Kalman filter. However, the Kalman filter is based on the mean square error criterion, which can only capture the second-order statistics of the noise and is sensitive to large outliers. In many...
Autores principales: | Huang, Hongliang, Zhang, Hai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875718/ https://www.ncbi.nlm.nih.gov/pubmed/35214580 http://dx.doi.org/10.3390/s22041683 |
Ejemplares similares
-
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation
por: Liu, Xi, et al.
Publicado: (2016) -
Adaptive Robust Unscented Kalman Filter via Fading Factor and Maximum Correntropy Criterion
por: Deng, Zhihong, et al.
Publicado: (2018) -
Variational Bayesian-Based Improved Maximum Mixture Correntropy Kalman Filter for Non-Gaussian Noise
por: Li, Xuyou, et al.
Publicado: (2022) -
2D and 3D Angles-Only Target Tracking Based on Maximum Correntropy Kalman Filters
por: Urooj, Asfia, et al.
Publicado: (2022) -
Maximum Correntropy with Variable Center Unscented Kalman Filter for Robust Power System State Estimation
por: Sun, Zhenglong, et al.
Publicado: (2022)