Cargando…
Orientation Dependent Hardening by <001> Rod-Shaped Misfitting Precipitates in Aluminium Alloys
A coherent precipitate formed in a metallic alloy is of importance in its strengthening mechanism, owing to dislocation/precipitate interaction. Therefore, the present study investigated the effect of <001> rod-shaped precipitates on misfit hardening in aluminium alloys by means of parametric...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875748/ https://www.ncbi.nlm.nih.gov/pubmed/35207921 http://dx.doi.org/10.3390/ma15041380 |
_version_ | 1784658006927998976 |
---|---|
author | Liu, Jianbin Muraishi, Shinji |
author_facet | Liu, Jianbin Muraishi, Shinji |
author_sort | Liu, Jianbin |
collection | PubMed |
description | A coherent precipitate formed in a metallic alloy is of importance in its strengthening mechanism, owing to dislocation/precipitate interaction. Therefore, the present study investigated the effect of <001> rod-shaped precipitates on misfit hardening in aluminium alloys by means of parametric dislocation dynamics simulation based on Green’s function method. The simulation results revealed that the topological evolution of the dislocation microstructure is greatly influenced by local internal stress around the <001> rod precipitate. The strong orientation dependence of misfit hardening was observed for the gradients of the stress–strain curves and their maximum shear stresses, where the difference in the maximum stress values amounted to 30%. The strong and weak hardening behaviours associated with the internal stress of <001> rod precipitates were implemented in terms of the energy associated with the dislocation motion. |
format | Online Article Text |
id | pubmed-8875748 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88757482022-02-26 Orientation Dependent Hardening by <001> Rod-Shaped Misfitting Precipitates in Aluminium Alloys Liu, Jianbin Muraishi, Shinji Materials (Basel) Article A coherent precipitate formed in a metallic alloy is of importance in its strengthening mechanism, owing to dislocation/precipitate interaction. Therefore, the present study investigated the effect of <001> rod-shaped precipitates on misfit hardening in aluminium alloys by means of parametric dislocation dynamics simulation based on Green’s function method. The simulation results revealed that the topological evolution of the dislocation microstructure is greatly influenced by local internal stress around the <001> rod precipitate. The strong orientation dependence of misfit hardening was observed for the gradients of the stress–strain curves and their maximum shear stresses, where the difference in the maximum stress values amounted to 30%. The strong and weak hardening behaviours associated with the internal stress of <001> rod precipitates were implemented in terms of the energy associated with the dislocation motion. MDPI 2022-02-13 /pmc/articles/PMC8875748/ /pubmed/35207921 http://dx.doi.org/10.3390/ma15041380 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Jianbin Muraishi, Shinji Orientation Dependent Hardening by <001> Rod-Shaped Misfitting Precipitates in Aluminium Alloys |
title | Orientation Dependent Hardening by <001> Rod-Shaped Misfitting Precipitates in Aluminium Alloys |
title_full | Orientation Dependent Hardening by <001> Rod-Shaped Misfitting Precipitates in Aluminium Alloys |
title_fullStr | Orientation Dependent Hardening by <001> Rod-Shaped Misfitting Precipitates in Aluminium Alloys |
title_full_unstemmed | Orientation Dependent Hardening by <001> Rod-Shaped Misfitting Precipitates in Aluminium Alloys |
title_short | Orientation Dependent Hardening by <001> Rod-Shaped Misfitting Precipitates in Aluminium Alloys |
title_sort | orientation dependent hardening by <001> rod-shaped misfitting precipitates in aluminium alloys |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875748/ https://www.ncbi.nlm.nih.gov/pubmed/35207921 http://dx.doi.org/10.3390/ma15041380 |
work_keys_str_mv | AT liujianbin orientationdependenthardeningby001rodshapedmisfittingprecipitatesinaluminiumalloys AT muraishishinji orientationdependenthardeningby001rodshapedmisfittingprecipitatesinaluminiumalloys |