Cargando…
Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map
Cellular signaling data is widely available in mobile communications and contains abundant movement sensing information of individual travelers. Using cellular signaling data to estimate the trajectories of mobile users can benefit many location-based applications, including infectious disease traci...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875912/ https://www.ncbi.nlm.nih.gov/pubmed/35214506 http://dx.doi.org/10.3390/s22041605 |
_version_ | 1784658045223043072 |
---|---|
author | Chen, Langqiao Lu, Yuhuan He, Zhaocheng Chen, Yixian |
author_facet | Chen, Langqiao Lu, Yuhuan He, Zhaocheng Chen, Yixian |
author_sort | Chen, Langqiao |
collection | PubMed |
description | Cellular signaling data is widely available in mobile communications and contains abundant movement sensing information of individual travelers. Using cellular signaling data to estimate the trajectories of mobile users can benefit many location-based applications, including infectious disease tracing and screening, network flow sensing, traffic scheduling, etc. However, conventional methods rely too much on heuristic hypotheses or hardware-dependent network fingerprinting approaches. To address the above issues, NF-Track (Network-wide Fingerprinting based Tracking) is proposed to realize accurate online map-matching of cellular location sequences. In particular, neither prior assumptions such as arterial preference and less-turn preference or extra hardware-relevant parameters such as RSS and SNR are required for the proposed framework. Therefore, it has a strong generalization ability to be flexibly deployed in the cloud computing environment of telecom operators. In this architecture, a novel segment-granularity fingerprint map is put forward to provide sufficient prior knowledge. Then, a real-time trajectory estimation process is developed for precise positioning and tracking. In our experiments implemented on the urban road network, NF-Track can achieve a recall rate of 91.68% and a precision rate of 90.35% in sophisticated traffic scenes, which are superior to the state-of-the-art model-based unsupervised learning approaches. |
format | Online Article Text |
id | pubmed-8875912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88759122022-02-26 Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map Chen, Langqiao Lu, Yuhuan He, Zhaocheng Chen, Yixian Sensors (Basel) Article Cellular signaling data is widely available in mobile communications and contains abundant movement sensing information of individual travelers. Using cellular signaling data to estimate the trajectories of mobile users can benefit many location-based applications, including infectious disease tracing and screening, network flow sensing, traffic scheduling, etc. However, conventional methods rely too much on heuristic hypotheses or hardware-dependent network fingerprinting approaches. To address the above issues, NF-Track (Network-wide Fingerprinting based Tracking) is proposed to realize accurate online map-matching of cellular location sequences. In particular, neither prior assumptions such as arterial preference and less-turn preference or extra hardware-relevant parameters such as RSS and SNR are required for the proposed framework. Therefore, it has a strong generalization ability to be flexibly deployed in the cloud computing environment of telecom operators. In this architecture, a novel segment-granularity fingerprint map is put forward to provide sufficient prior knowledge. Then, a real-time trajectory estimation process is developed for precise positioning and tracking. In our experiments implemented on the urban road network, NF-Track can achieve a recall rate of 91.68% and a precision rate of 90.35% in sophisticated traffic scenes, which are superior to the state-of-the-art model-based unsupervised learning approaches. MDPI 2022-02-18 /pmc/articles/PMC8875912/ /pubmed/35214506 http://dx.doi.org/10.3390/s22041605 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Langqiao Lu, Yuhuan He, Zhaocheng Chen, Yixian Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map |
title | Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map |
title_full | Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map |
title_fullStr | Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map |
title_full_unstemmed | Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map |
title_short | Online Trajectory Estimation Based on a Network-Wide Cellular Fingerprint Map |
title_sort | online trajectory estimation based on a network-wide cellular fingerprint map |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875912/ https://www.ncbi.nlm.nih.gov/pubmed/35214506 http://dx.doi.org/10.3390/s22041605 |
work_keys_str_mv | AT chenlangqiao onlinetrajectoryestimationbasedonanetworkwidecellularfingerprintmap AT luyuhuan onlinetrajectoryestimationbasedonanetworkwidecellularfingerprintmap AT hezhaocheng onlinetrajectoryestimationbasedonanetworkwidecellularfingerprintmap AT chenyixian onlinetrajectoryestimationbasedonanetworkwidecellularfingerprintmap |