Cargando…

Investigating the Effect of Smoke Treatment on Hygroscopic Characteristics of Bamboo by FTIR and Raman Spectroscopy

Treatment modification to improve the durability of bamboo against biotic and abiotic factors often results in adverse effects to its mechanical properties due to changes in hygroscopic characteristics. This study aims at exploring in more detail, the effect of treatment modification, in particular...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramful, Raviduth, Sunthar, Thefye P. M., Marin, Elia, Zhu, Wenliang, Pezzotti, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875932/
https://www.ncbi.nlm.nih.gov/pubmed/35208082
http://dx.doi.org/10.3390/ma15041544
_version_ 1784658050011889664
author Ramful, Raviduth
Sunthar, Thefye P. M.
Marin, Elia
Zhu, Wenliang
Pezzotti, Giuseppe
author_facet Ramful, Raviduth
Sunthar, Thefye P. M.
Marin, Elia
Zhu, Wenliang
Pezzotti, Giuseppe
author_sort Ramful, Raviduth
collection PubMed
description Treatment modification to improve the durability of bamboo against biotic and abiotic factors often results in adverse effects to its mechanical properties due to changes in hygroscopic characteristics. This study aims at exploring in more detail, the effect of treatment modification, in particular smoke treatment, on the hygroscopic nature of bamboo. In the first part of this study, changes to its chemical structure were investigated by Raman and Fourier-transform infrared (FTIR) spectroscopic techniques. From Raman analysis, specific bands attributed to lignin component in bamboo, namely at 1600 cm(−1) and 1632 cm(−1), which varied in intensities among treated and untreated specimens, could be considered to assess the extent of treatment modification. Besides, FTIR results showed that the chemical constituents of bamboo inner and outermost surfaces vary extensively with distinctive changes during treatment modification. The steam component in smoke treatment is assumed to cause a slight increase in the moisture content in the outermost surface of smoked bamboo as evidenced by FTIR results. In addition, the hydrophobic surface of smoked bamboo, which was affected during smoke treatment modification due to superior mean roughness parameter in its outermost surface, impacted its water-repelling ability. From FTIR results, an increase in lignin in bamboo was confirmed at peak 1114 cm(−1), which occurred as a result of thermal effect above a temperature of 100 °C leading to poly-condensation reactions. The increase in lignin is assumed to cause an overall increase in hardness of smoked bamboo which was found to be two-fold higher when compared with the untreated ones. The approach of this research investigation, which has shown the benefit of using spectroscopic techniques to monitor and understand the changes in the hygroscopic nature of bamboo surfaces, can likewise be considered to predict the corresponding effects of treatment modification or degradation on the mechanical properties of natural materials.
format Online
Article
Text
id pubmed-8875932
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88759322022-02-26 Investigating the Effect of Smoke Treatment on Hygroscopic Characteristics of Bamboo by FTIR and Raman Spectroscopy Ramful, Raviduth Sunthar, Thefye P. M. Marin, Elia Zhu, Wenliang Pezzotti, Giuseppe Materials (Basel) Article Treatment modification to improve the durability of bamboo against biotic and abiotic factors often results in adverse effects to its mechanical properties due to changes in hygroscopic characteristics. This study aims at exploring in more detail, the effect of treatment modification, in particular smoke treatment, on the hygroscopic nature of bamboo. In the first part of this study, changes to its chemical structure were investigated by Raman and Fourier-transform infrared (FTIR) spectroscopic techniques. From Raman analysis, specific bands attributed to lignin component in bamboo, namely at 1600 cm(−1) and 1632 cm(−1), which varied in intensities among treated and untreated specimens, could be considered to assess the extent of treatment modification. Besides, FTIR results showed that the chemical constituents of bamboo inner and outermost surfaces vary extensively with distinctive changes during treatment modification. The steam component in smoke treatment is assumed to cause a slight increase in the moisture content in the outermost surface of smoked bamboo as evidenced by FTIR results. In addition, the hydrophobic surface of smoked bamboo, which was affected during smoke treatment modification due to superior mean roughness parameter in its outermost surface, impacted its water-repelling ability. From FTIR results, an increase in lignin in bamboo was confirmed at peak 1114 cm(−1), which occurred as a result of thermal effect above a temperature of 100 °C leading to poly-condensation reactions. The increase in lignin is assumed to cause an overall increase in hardness of smoked bamboo which was found to be two-fold higher when compared with the untreated ones. The approach of this research investigation, which has shown the benefit of using spectroscopic techniques to monitor and understand the changes in the hygroscopic nature of bamboo surfaces, can likewise be considered to predict the corresponding effects of treatment modification or degradation on the mechanical properties of natural materials. MDPI 2022-02-18 /pmc/articles/PMC8875932/ /pubmed/35208082 http://dx.doi.org/10.3390/ma15041544 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ramful, Raviduth
Sunthar, Thefye P. M.
Marin, Elia
Zhu, Wenliang
Pezzotti, Giuseppe
Investigating the Effect of Smoke Treatment on Hygroscopic Characteristics of Bamboo by FTIR and Raman Spectroscopy
title Investigating the Effect of Smoke Treatment on Hygroscopic Characteristics of Bamboo by FTIR and Raman Spectroscopy
title_full Investigating the Effect of Smoke Treatment on Hygroscopic Characteristics of Bamboo by FTIR and Raman Spectroscopy
title_fullStr Investigating the Effect of Smoke Treatment on Hygroscopic Characteristics of Bamboo by FTIR and Raman Spectroscopy
title_full_unstemmed Investigating the Effect of Smoke Treatment on Hygroscopic Characteristics of Bamboo by FTIR and Raman Spectroscopy
title_short Investigating the Effect of Smoke Treatment on Hygroscopic Characteristics of Bamboo by FTIR and Raman Spectroscopy
title_sort investigating the effect of smoke treatment on hygroscopic characteristics of bamboo by ftir and raman spectroscopy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875932/
https://www.ncbi.nlm.nih.gov/pubmed/35208082
http://dx.doi.org/10.3390/ma15041544
work_keys_str_mv AT ramfulraviduth investigatingtheeffectofsmoketreatmentonhygroscopiccharacteristicsofbamboobyftirandramanspectroscopy
AT suntharthefyepm investigatingtheeffectofsmoketreatmentonhygroscopiccharacteristicsofbamboobyftirandramanspectroscopy
AT marinelia investigatingtheeffectofsmoketreatmentonhygroscopiccharacteristicsofbamboobyftirandramanspectroscopy
AT zhuwenliang investigatingtheeffectofsmoketreatmentonhygroscopiccharacteristicsofbamboobyftirandramanspectroscopy
AT pezzottigiuseppe investigatingtheeffectofsmoketreatmentonhygroscopiccharacteristicsofbamboobyftirandramanspectroscopy