Cargando…
Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning
Transfer learning from natural images is used in deep neural networks (DNNs) for medical image classification to achieve a computer-aided clinical diagnosis. Although the adversarial vulnerability of DNNs hinders practical applications owing to the high stakes of diagnosis, adversarial attacks are e...
Autores principales: | Minagi, Akinori, Hirano, Hokuto, Takemoto, Kauzhiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875959/ https://www.ncbi.nlm.nih.gov/pubmed/35200740 http://dx.doi.org/10.3390/jimaging8020038 |
Ejemplares similares
-
Universal adversarial attacks on deep neural networks for medical image classification
por: Hirano, Hokuto, et al.
Publicado: (2021) -
Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks
por: Hirano, Hokuto, et al.
Publicado: (2020) -
Adversarial Attacks on Medical Image Classification
por: Tsai, Min-Jen, et al.
Publicado: (2023) -
Image classification adversarial attack with improved resizing transformation and ensemble models
por: Li, Chenwei, et al.
Publicado: (2023) -
Transferability of features for neural networks links to adversarial attacks and defences
por: Kotyan, Shashank, et al.
Publicado: (2022)