Cargando…
Multi-Method Diagnosis of Blood Microscopic Sample for Early Detection of Acute Lymphoblastic Leukemia Based on Deep Learning and Hybrid Techniques
Leukemia is one of the most dangerous types of malignancies affecting the bone marrow or blood in all age groups, both in children and adults. The most dangerous and deadly type of leukemia is acute lymphoblastic leukemia (ALL). It is diagnosed by hematologists and experts in blood and bone marrow s...
Autores principales: | Abunadi, Ibrahim, Senan, Ebrahim Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876170/ https://www.ncbi.nlm.nih.gov/pubmed/35214531 http://dx.doi.org/10.3390/s22041629 |
Ejemplares similares
-
Hybrid Techniques for the Diagnosis of Acute Lymphoblastic Leukemia Based on Fusion of CNN Features
por: Ahmed, Ibrahim Abdulrab, et al.
Publicado: (2023) -
Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms
por: Senan, Ebrahim Mohammed, et al.
Publicado: (2021) -
Hybrid and Deep Learning Approach for Early Diagnosis of Lower Gastrointestinal Diseases
por: Fati, Suliman Mohamed, et al.
Publicado: (2022) -
Analyzing Histological Images Using Hybrid Techniques for Early Detection of Multi-Class Breast Cancer Based on Fusion Features of CNN and Handcrafted
por: Al-Jabbar, Mohammed, et al.
Publicado: (2023) -
Early Diagnosis of Brain Tumour MRI Images Using Hybrid Techniques between Deep and Machine Learning
por: Senan, Ebrahim Mohammed, et al.
Publicado: (2022)