Cargando…
Novel feature selection method via kernel tensor decomposition for improved multi-omics data analysis
BACKGROUND: Feature selection of multi-omics data analysis remains challenging owing to the size of omics datasets, comprising approximately [Formula: see text] –[Formula: see text] features. In particular, appropriate methods to weight individual omics datasets are unclear, and the approach adopted...
Autores principales: | Taguchi, Y-h., Turki, Turki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876179/ https://www.ncbi.nlm.nih.gov/pubmed/35209912 http://dx.doi.org/10.1186/s12920-022-01181-4 |
Ejemplares similares
-
Tensor-Decomposition-Based Unsupervised Feature Extraction Applied to Prostate Cancer Multiomics Data
por: Taguchi, Y-h., et al.
Publicado: (2020) -
Tensor-Decomposition-Based Unsupervised Feature Extraction in Single-Cell Multiomics Data Analysis
por: Taguchi, Y-h., et al.
Publicado: (2021) -
Adapted tensor decomposition and PCA based unsupervised feature extraction select more biologically reasonable differentially expressed genes than conventional methods
por: Taguchi, Y-h., et al.
Publicado: (2022) -
Projection in genomic analysis: A theoretical basis to rationalize tensor decomposition and principal component analysis as feature selection tools
por: Taguchi, Y-h., et al.
Publicado: (2022) -
Tensor Decomposition-Based Unsupervised Feature Extraction Applied to Single-Cell Gene Expression Analysis
por: Taguchi, Y-h., et al.
Publicado: (2019)