Cargando…
Diagnosis of Esophageal Lesions by Multi-Classification and Segmentation Using an Improved Multi-Task Deep Learning Model
It is challenging for endoscopists to accurately detect esophageal lesions during gastrointestinal endoscopic screening due to visual similarities among different lesions in terms of shape, size, and texture among patients. Additionally, endoscopists are busy fighting esophageal lesions every day, h...
Autores principales: | Tang, Suigu, Yu, Xiaoyuan, Cheang, Chak-Fong, Hu, Zeming, Fang, Tong, Choi, I-Cheong, Yu, Hon-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876234/ https://www.ncbi.nlm.nih.gov/pubmed/35214396 http://dx.doi.org/10.3390/s22041492 |
Ejemplares similares
-
Multi-Task Model for Esophageal Lesion Analysis Using Endoscopic Images: Classification with Image Retrieval and Segmentation with Attention
por: Yu, Xiaoyuan, et al.
Publicado: (2021) -
GSN-HVNET: A Lightweight, Multi-Task Deep Learning Framework for Nuclei Segmentation and Classification
por: Zhao, Tengfei, et al.
Publicado: (2023) -
Explainable multi-instance and multi-task learning for COVID-19 diagnosis and lesion segmentation in CT images()
por: Li, Minglei, et al.
Publicado: (2022) -
Multi-Task Classification and Segmentation for Explicable Capsule Endoscopy Diagnostics
por: Kong, Zishang, et al.
Publicado: (2021) -
A Novel Multi-Task Learning Network Based on Melanoma Segmentation and Classification with Skin Lesion Images
por: Alenezi, Fayadh, et al.
Publicado: (2023)