Cargando…
Neural Network-Based Multi-Objective Optimization of Adjustable Drawbead Movement for Deep Drawing of Tailor-Welded Blanks
To improve the formability in the deep drawing of tailor-welded blanks, an adjustable drawbead was introduced. Drawbead movement was obtained using the multi-objective optimization of the conflicting objective functions of the fracture and centerline deviation simultaneously. Finite element simulati...
Autores principales: | Kahhal, Parviz, Jung, Jaebong, Hur, Yong Chan, Moon, Young Hoon, Kim, Ji Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876243/ https://www.ncbi.nlm.nih.gov/pubmed/35207967 http://dx.doi.org/10.3390/ma15041430 |
Ejemplares similares
-
Deep Drawing of High-Strength Tailored Blanks by Using Tailored Tools
por: Mennecart, Thomas, et al.
Publicado: (2016) -
Optimization of Friction Stir Spot Welding Process Using Bonding Criterion and Artificial Neural Network
por: Jo, Deok Sang, et al.
Publicado: (2023) -
Modelling of Friction Phenomena Existed in Drawbead in Sheet Metal Forming
por: Trzepieciński, Tomasz, et al.
Publicado: (2021) -
Application of Artificial Neural Networks to the Analysis of Friction Behaviour in a Drawbead Profile in Sheet Metal Forming
por: Trzepieciński, Tomasz, et al.
Publicado: (2022) -
A multi-objective optimization using response surface model coupled with particle swarm algorithm on FSW process parameters
por: Kahhal, Parviz, et al.
Publicado: (2022)