Cargando…

Simplified Mutual Inductance Calculation of Planar Spiral Coil for Wireless Power Applications

In this paper, a simplified method for the calculation of a mutual inductance of the planar spiral coil, motivated from the Archimedean spiral, is presented. This method is derived by solving Neumann’s integral formula in a cylindrical coordinate system, and a numerical tool is used to determine the...

Descripción completa

Detalles Bibliográficos
Autores principales: Hussain, Iftikhar, Woo, Dong-Kyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876344/
https://www.ncbi.nlm.nih.gov/pubmed/35214439
http://dx.doi.org/10.3390/s22041537
Descripción
Sumario:In this paper, a simplified method for the calculation of a mutual inductance of the planar spiral coil, motivated from the Archimedean spiral, is presented. This method is derived by solving Neumann’s integral formula in a cylindrical coordinate system, and a numerical tool is used to determine the value of mutual inductance. This approach can calculate the mutual inductances accurately at various coaxial and non-coaxial distances for different coil geometries. The calculation result is compared with the 3D finite element analyses to verify its accuracy, which shows good consistency. Furthermore, to confirm it experimentally, Litz wire is used to fabricate the sample spiral coils. Finally, the comparison of a simplified method is also studied relative to the coupling coefficient. The accuracy of the calculation results with the simulation and the measurement results makes it a good candidate to apply it in wireless power applications.