Cargando…
Why Do High-Risk Patients Develop or Not Develop Coronary Artery Disease? Metabolic Insights from the CAPIRE Study
Traditional cardiovascular (CV) risk factors (RFs) and coronary artery disease (CAD) do not always show a direct correlation. We investigated the metabolic differences in a cohort of patients with a high CV risk profile who developed, or did not develop, among those enrolled in the Coronary Atherosc...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876355/ https://www.ncbi.nlm.nih.gov/pubmed/35208197 http://dx.doi.org/10.3390/metabo12020123 |
Sumario: | Traditional cardiovascular (CV) risk factors (RFs) and coronary artery disease (CAD) do not always show a direct correlation. We investigated the metabolic differences in a cohort of patients with a high CV risk profile who developed, or did not develop, among those enrolled in the Coronary Atherosclerosis in Outlier Subjects: Protective and Novel Individual Risk Factors Evaluation (CAPIRE) study. We studied 112 subjects with a high CV risk profile, subdividing them according to the presence (CAD/High-RFs) or absence of CAD (No-CAD/High-RFs), assessed by computed tomography angiography. The metabolic differences between the two groups were identified by gas chromatography-mass spectrometry. Characteristic patterns and specific metabolites emerged for each of the two phenotypic groups: high concentrations of pyruvic acid, pipecolic acid, p-cresol, 3-aminoisobutyric acid, isoleucine, glyceric acid, lactic acid, sucrose, phosphoric acid, trimethylamine-N-oxide, 3-hydroxy-3-methylglutaric acid, erythritol, 3-hydroxybutyric acid, glucose, leucine, and glutamic acid; and low concentrations of cholesterol, hypoxanthine, glycerol-3-P, and cysteine in the CAD/High-RFs group vs the No-CAD/High-RFs group. Our results show the existence of different metabolic profiles between patients who develop CAD and those who do not, despite comparable high CV risk profiles. A specific cluster of metabolites, rather than a single marker, appears to be able to identify novel predisposing or protective mechanisms towards CAD beyond classic CVRFs. |
---|