Cargando…
Liquid Biopsy in Type 2 Diabetes Mellitus Management: Building Specific Biosignatures via Machine Learning
Background: The need for minimally invasive biomarkers for the early diagnosis of type 2 diabetes (T2DM) prior to the clinical onset and monitoring of β-pancreatic cell loss is emerging. Here, we focused on studying circulating cell-free DNA (ccfDNA) as a liquid biopsy biomaterial for accurate diagn...
Autores principales: | Karaglani, Makrina, Panagopoulou, Maria, Cheimonidi, Christina, Tsamardinos, Ioannis, Maltezos, Efstratios, Papanas, Nikolaos, Papazoglou, Dimitrios, Mastorakos, George, Chatzaki, Ekaterini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876363/ https://www.ncbi.nlm.nih.gov/pubmed/35207316 http://dx.doi.org/10.3390/jcm11041045 |
Ejemplares similares
-
Deciphering the Methylation Landscape in Breast Cancer: Diagnostic and Prognostic Biosignatures through Automated Machine Learning
por: Panagopoulou, Maria, et al.
Publicado: (2021) -
Tissue-Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach
por: Karaglani, Makrina, et al.
Publicado: (2022) -
Accurate Blood-Based Diagnostic Biosignatures for Alzheimer’s Disease via Automated Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2020) -
ENPP2 Promoter Methylation Correlates with Decreased Gene Expression in Breast Cancer: Implementation as a Liquid Biopsy Biomarker
por: Panagopoulou, Maria, et al.
Publicado: (2022) -
Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets
por: Papoutsoglou, Georgios, et al.
Publicado: (2021)