Cargando…
Collision tumors revealed by prospectively assessing subtype-defining molecular alterations in 904 individual prostate cancer foci
BACKGROUND: Prostate cancer is multifocal with distinct molecular subtypes. The utility of genomic subtyping has been challenged due to inter- and intrafocal heterogeneity. We sought to characterize the subtype-defining molecular alterations of primary prostate cancer across all tumor foci within ra...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876549/ https://www.ncbi.nlm.nih.gov/pubmed/35050902 http://dx.doi.org/10.1172/jci.insight.155309 |
Sumario: | BACKGROUND: Prostate cancer is multifocal with distinct molecular subtypes. The utility of genomic subtyping has been challenged due to inter- and intrafocal heterogeneity. We sought to characterize the subtype-defining molecular alterations of primary prostate cancer across all tumor foci within radical prostatectomy (RP) specimens and determine the prevalence of collision tumors. METHODS: From the Early Detection Research Network cohort, we identified 333 prospectively collected RPs from 2010 to 2014 and assessed ETS-related gene (ERG), serine peptidase inhibitor Kazal type 1 (SPINK1), phosphatase and tensin homolog (PTEN), and speckle type BTB/POZ protein (SPOP) molecular status. We utilized dual ERG/SPINK1 immunohistochemistry and fluorescence in situ hybridization to confirm ERG rearrangements and characterize PTEN deletion, as well as high-resolution melting curve analysis and Sanger sequencing to determine SPOP mutation status. RESULTS: Based on index focus alone, ERG, SPINK1, PTEN, and SPOP alterations were identified in 47.5%, 10.8%, 14.3%, and 5.1% of RP specimens, respectively. In 233 multifocal RPs with ERG/SPINK1 status in all foci, 139 (59.7%) had discordant molecular alterations between foci. Collision tumors, as defined by discrepant ERG/SPINK1 status within a single focus, were identified in 29 (9.4%) RP specimens. CONCLUSION: Interfocal molecular heterogeneity was identified in about 60% of multifocal RP specimens, and collision tumors were present in about 10%. We present this phenomenon as a model for the intrafocal heterogeneity observed in previous studies and propose that future genomic studies screen for collision tumors to better characterize molecular heterogeneity. FUNDING: Early Detection Research Network US National Cancer Institute (NCI) 5U01 CA111275-09, Center for Translational Pathology at Weill Cornell Medicine (WCM) Department of Pathology and Laboratory Medicine, US NCI (WCM SPORE in Prostate Cancer, P50CA211024-01), R37CA215040, Damon Runyon Cancer Research Foundation, US MetLife Foundation Family Clinical Investigator Award, Norwegian Cancer Society (grant 208197), and South-Eastern Norway Regional Health Authority (grant 2019016 and 2020063). |
---|