Cargando…
A Transfer Learning Framework with a One-Dimensional Deep Subdomain Adaptation Network for Bearing Fault Diagnosis under Different Working Conditions
Accurate and fast rolling bearing fault diagnosis is required for the normal operation of rotating machinery and equipment. Although deep learning methods have achieved excellent results for rolling bearing fault diagnosis, the performance of most methods declines sharply when the working conditions...
Autores principales: | Zhang, Ruixin, Gu, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876626/ https://www.ncbi.nlm.nih.gov/pubmed/35214528 http://dx.doi.org/10.3390/s22041624 |
Ejemplares similares
-
One-Dimensional Multi-Scale Domain Adaptive Network for Bearing-Fault Diagnosis under Varying Working Conditions
por: Wang, Kai, et al.
Publicado: (2020) -
A Weighted Subdomain Adaptation Network for Partial Transfer Fault Diagnosis of Rotating Machinery
por: Jia, Sixiang, et al.
Publicado: (2021) -
Deep Transfer Network with Multi-Space Dynamic Distribution Adaptation for Bearing Fault Diagnosis
por: Zheng, Xiaorong, et al.
Publicado: (2022) -
Multilocation and Multiscale Learning Framework with Skip Connection for Fault Diagnosis of Bearing under Complex Working Conditions
por: Ban, Hongwei, et al.
Publicado: (2021) -
Adversarial Auxiliary Weighted Subdomain Adaptation for Open-Set Deep Transfer Bridge Damage Diagnosis
por: Xiao, Haitao, et al.
Publicado: (2023)