Cargando…
IMGG: Integrating Multiple Single-Cell Datasets through Connected Graphs and Generative Adversarial Networks
There is a strong need to eliminate batch-specific differences when integrating single-cell RNA-sequencing (scRNA-seq) datasets generated under different experimental conditions for downstream task analysis. Existing batch correction methods usually transform different batches of cells into one pres...
Autores principales: | Wang, Xun, Zhang, Chaogang, Zhang, Ying, Meng, Xiangyu, Zhang, Zhiyuan, Shi, Xin, Song, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876681/ https://www.ncbi.nlm.nih.gov/pubmed/35216199 http://dx.doi.org/10.3390/ijms23042082 |
Ejemplares similares
-
Integrating Multiple Single-Cell RNA Sequencing Datasets Using Adversarial Autoencoders
por: Wang, Xun, et al.
Publicado: (2023) -
iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks
por: Wang, Dongfang, et al.
Publicado: (2021) -
LHC analysis-specific datasets with Generative Adversarial Networks
por: Hashemi, Bobak, et al.
Publicado: (2019) -
A universal lesion detection method based on partially supervised learning
por: Wang, Xun, et al.
Publicado: (2023) -
Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics
por: Kansal, Raghav, et al.
Publicado: (2020)