Cargando…
Studying the Influence of Silica Fume on Bond Strength of the PCM-Concrete Interface under Shear Stress Condition
The polymer cement mortar (PCM) overlay method is a promising solution for strengthening deteriorated concrete structures in which the occurrence of premature debonding at the interfaces prevents the strengthened structures from achieving full serviceability. The purpose of this study is to improve...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876759/ https://www.ncbi.nlm.nih.gov/pubmed/35208011 http://dx.doi.org/10.3390/ma15041473 |
_version_ | 1784658249568485376 |
---|---|
author | Mizan, Mahmudul Hasan Matsumoto, Koji |
author_facet | Mizan, Mahmudul Hasan Matsumoto, Koji |
author_sort | Mizan, Mahmudul Hasan |
collection | PubMed |
description | The polymer cement mortar (PCM) overlay method is a promising solution for strengthening deteriorated concrete structures in which the occurrence of premature debonding at the interfaces prevents the strengthened structures from achieving full serviceability. The purpose of this study is to improve the concrete–PCM interfacial bond to prevent premature debonding. There are two main focuses of this study: (i) investigation of the effectiveness of adding 5% silica fume to PCM in forming a chemical connection between concrete and PCM, based on a direct single-surface shear test using two roughness levels of concrete (smooth and rough) and microstructure analysis and (ii) performance evaluation of the bond between substrate concrete and a PCM overlay with/without silica fume at early ages and with different moisture conditions at the interface, based on a bi-surface shear test using rough substrate concrete surface. The inclusion of 5% silica fume with PCM caused an improvement in the interfacial strength (approximately 113% relative to the normal PCM in cases of without primer), with a smooth concrete substrate surface where mechanical bonding had less influence. In addition, lower Ca/Si values in the interface of modified 5% silica PCM specimens compared to the normal PCM specimens quantified by energy-dispersive X-ray spectroscopy (EDS) indicate the formation of a chemical connection at the concrete–PCM interface by transforming harmful Ca(OH)(2) into more C-S-H which strongly improves the bonding strength. As a repair layer mortar, the positive influence of silica fume in modified 5% silica PCM specimens was also found at early ages and with different moisture conditions at the interface compared to the normal PCM. In conclusion, the addition of silica fume to the PCM caused chemical connection at the concrete–PCM interface and improved the interfacial performance. |
format | Online Article Text |
id | pubmed-8876759 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88767592022-02-26 Studying the Influence of Silica Fume on Bond Strength of the PCM-Concrete Interface under Shear Stress Condition Mizan, Mahmudul Hasan Matsumoto, Koji Materials (Basel) Article The polymer cement mortar (PCM) overlay method is a promising solution for strengthening deteriorated concrete structures in which the occurrence of premature debonding at the interfaces prevents the strengthened structures from achieving full serviceability. The purpose of this study is to improve the concrete–PCM interfacial bond to prevent premature debonding. There are two main focuses of this study: (i) investigation of the effectiveness of adding 5% silica fume to PCM in forming a chemical connection between concrete and PCM, based on a direct single-surface shear test using two roughness levels of concrete (smooth and rough) and microstructure analysis and (ii) performance evaluation of the bond between substrate concrete and a PCM overlay with/without silica fume at early ages and with different moisture conditions at the interface, based on a bi-surface shear test using rough substrate concrete surface. The inclusion of 5% silica fume with PCM caused an improvement in the interfacial strength (approximately 113% relative to the normal PCM in cases of without primer), with a smooth concrete substrate surface where mechanical bonding had less influence. In addition, lower Ca/Si values in the interface of modified 5% silica PCM specimens compared to the normal PCM specimens quantified by energy-dispersive X-ray spectroscopy (EDS) indicate the formation of a chemical connection at the concrete–PCM interface by transforming harmful Ca(OH)(2) into more C-S-H which strongly improves the bonding strength. As a repair layer mortar, the positive influence of silica fume in modified 5% silica PCM specimens was also found at early ages and with different moisture conditions at the interface compared to the normal PCM. In conclusion, the addition of silica fume to the PCM caused chemical connection at the concrete–PCM interface and improved the interfacial performance. MDPI 2022-02-16 /pmc/articles/PMC8876759/ /pubmed/35208011 http://dx.doi.org/10.3390/ma15041473 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mizan, Mahmudul Hasan Matsumoto, Koji Studying the Influence of Silica Fume on Bond Strength of the PCM-Concrete Interface under Shear Stress Condition |
title | Studying the Influence of Silica Fume on Bond Strength of the PCM-Concrete Interface under Shear Stress Condition |
title_full | Studying the Influence of Silica Fume on Bond Strength of the PCM-Concrete Interface under Shear Stress Condition |
title_fullStr | Studying the Influence of Silica Fume on Bond Strength of the PCM-Concrete Interface under Shear Stress Condition |
title_full_unstemmed | Studying the Influence of Silica Fume on Bond Strength of the PCM-Concrete Interface under Shear Stress Condition |
title_short | Studying the Influence of Silica Fume on Bond Strength of the PCM-Concrete Interface under Shear Stress Condition |
title_sort | studying the influence of silica fume on bond strength of the pcm-concrete interface under shear stress condition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876759/ https://www.ncbi.nlm.nih.gov/pubmed/35208011 http://dx.doi.org/10.3390/ma15041473 |
work_keys_str_mv | AT mizanmahmudulhasan studyingtheinfluenceofsilicafumeonbondstrengthofthepcmconcreteinterfaceundershearstresscondition AT matsumotokoji studyingtheinfluenceofsilicafumeonbondstrengthofthepcmconcreteinterfaceundershearstresscondition |