Cargando…
An Analysis for Variable Physical Properties Involved in the Nano-Biofilm Transportation of Sutterby Fluid across Shrinking/Stretching Surface
In this article, we explore how activation energy and varied transit parameters influence the two-dimensional stagnation point motion of nano-biofilm of Sutterby fluids incorporating gyrotactic microbes across a porous straining/shrinking sheet. Prior investigations implied that fluid viscosity as w...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876801/ https://www.ncbi.nlm.nih.gov/pubmed/35214928 http://dx.doi.org/10.3390/nano12040599 |
_version_ | 1784658259493257216 |
---|---|
author | Abdal, Sohaib Siddique, Imran Afzal, Saima Sharifi, Somayeh Salimi, Mehdi Ahmadian, Ali |
author_facet | Abdal, Sohaib Siddique, Imran Afzal, Saima Sharifi, Somayeh Salimi, Mehdi Ahmadian, Ali |
author_sort | Abdal, Sohaib |
collection | PubMed |
description | In this article, we explore how activation energy and varied transit parameters influence the two-dimensional stagnation point motion of nano-biofilm of Sutterby fluids incorporating gyrotactic microbes across a porous straining/shrinking sheet. Prior investigations implied that fluid viscosity as well as thermal conductance are temperature based. This research proposes that fluid viscosity, heat capacity and nanofluid attributes are all modified by solute concentration. According to some empirical research, the viscosity as well as heat conductivity of nanoparticles are highly based on the concentration of nanoparticles instead of only the temperature. The shooting approach with the RK-4 technique is applied to acquire analytical results. We contrast our outcomes with those in the existing research and examine their consistency and reliability. The graphic performance of relevant factors on heat, velocity, density and motile concentration domains are depicted and discussed. The skin friction factor, Nusselt number, Sherwood number and the motile density are determined. As the concentration-dependent properties are updated, the speed, temperature, concentration and motile density profiles are enhanced, but for all concentration-varying factors, other physical quantities deteriorate. |
format | Online Article Text |
id | pubmed-8876801 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88768012022-02-26 An Analysis for Variable Physical Properties Involved in the Nano-Biofilm Transportation of Sutterby Fluid across Shrinking/Stretching Surface Abdal, Sohaib Siddique, Imran Afzal, Saima Sharifi, Somayeh Salimi, Mehdi Ahmadian, Ali Nanomaterials (Basel) Article In this article, we explore how activation energy and varied transit parameters influence the two-dimensional stagnation point motion of nano-biofilm of Sutterby fluids incorporating gyrotactic microbes across a porous straining/shrinking sheet. Prior investigations implied that fluid viscosity as well as thermal conductance are temperature based. This research proposes that fluid viscosity, heat capacity and nanofluid attributes are all modified by solute concentration. According to some empirical research, the viscosity as well as heat conductivity of nanoparticles are highly based on the concentration of nanoparticles instead of only the temperature. The shooting approach with the RK-4 technique is applied to acquire analytical results. We contrast our outcomes with those in the existing research and examine their consistency and reliability. The graphic performance of relevant factors on heat, velocity, density and motile concentration domains are depicted and discussed. The skin friction factor, Nusselt number, Sherwood number and the motile density are determined. As the concentration-dependent properties are updated, the speed, temperature, concentration and motile density profiles are enhanced, but for all concentration-varying factors, other physical quantities deteriorate. MDPI 2022-02-10 /pmc/articles/PMC8876801/ /pubmed/35214928 http://dx.doi.org/10.3390/nano12040599 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abdal, Sohaib Siddique, Imran Afzal, Saima Sharifi, Somayeh Salimi, Mehdi Ahmadian, Ali An Analysis for Variable Physical Properties Involved in the Nano-Biofilm Transportation of Sutterby Fluid across Shrinking/Stretching Surface |
title | An Analysis for Variable Physical Properties Involved in the Nano-Biofilm Transportation of Sutterby Fluid across Shrinking/Stretching Surface |
title_full | An Analysis for Variable Physical Properties Involved in the Nano-Biofilm Transportation of Sutterby Fluid across Shrinking/Stretching Surface |
title_fullStr | An Analysis for Variable Physical Properties Involved in the Nano-Biofilm Transportation of Sutterby Fluid across Shrinking/Stretching Surface |
title_full_unstemmed | An Analysis for Variable Physical Properties Involved in the Nano-Biofilm Transportation of Sutterby Fluid across Shrinking/Stretching Surface |
title_short | An Analysis for Variable Physical Properties Involved in the Nano-Biofilm Transportation of Sutterby Fluid across Shrinking/Stretching Surface |
title_sort | analysis for variable physical properties involved in the nano-biofilm transportation of sutterby fluid across shrinking/stretching surface |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876801/ https://www.ncbi.nlm.nih.gov/pubmed/35214928 http://dx.doi.org/10.3390/nano12040599 |
work_keys_str_mv | AT abdalsohaib ananalysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface AT siddiqueimran ananalysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface AT afzalsaima ananalysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface AT sharifisomayeh ananalysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface AT salimimehdi ananalysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface AT ahmadianali ananalysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface AT abdalsohaib analysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface AT siddiqueimran analysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface AT afzalsaima analysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface AT sharifisomayeh analysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface AT salimimehdi analysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface AT ahmadianali analysisforvariablephysicalpropertiesinvolvedinthenanobiofilmtransportationofsutterbyfluidacrossshrinkingstretchingsurface |