Cargando…
Olfactometer Responses of Convergent Lady Beetles Hippodamia convergens (Coleoptera: Coccinellidae) to Odor Cues from Aphid-Infested Cotton Plants Treated with Plant-Associated Fungi
SIMPLE SUMMARY: The cotton aphid Aphis gossypii is a serious agricultural pest. Microbes associated with plants can affect the behavior and performance of insect herbivores and their natural enemies. Phialemonium inflatum and Chaetomium globosum fungi can reduce cotton aphid reproduction when applie...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876858/ https://www.ncbi.nlm.nih.gov/pubmed/35206730 http://dx.doi.org/10.3390/insects13020157 |
Sumario: | SIMPLE SUMMARY: The cotton aphid Aphis gossypii is a serious agricultural pest. Microbes associated with plants can affect the behavior and performance of insect herbivores and their natural enemies. Phialemonium inflatum and Chaetomium globosum fungi can reduce cotton aphid reproduction when applied as a seed treatment to cotton. We evaluated whether these fungi might affect the interaction between cotton aphids and a natural enemy, the convergent lady beetle Hippodamia convergens. We used dual-choice olfactometer experiments to assess lady beetle behavioral responses to cues from fungal-treated cotton plants in the presence or absence of aphid infestations. In the absence of fungal treatments, males preferred odors from aphid-infested relative to non-infested plants, and females spent more time associated with olfactory stimuli from aphid-infested versus non-infested plants. When cues from fungal-treated plants infested with aphids were assessed, there were no differences in lady beetle responses. The only fungal treatment-related effects involved plants without aphids. In the absence of aphids, males responded slower to P. inflatum-treated plants compared to control, and females preferred P. inflatum-treated plants. Treating cotton with these potentially beneficial fungi had minor effects on lady beetle behavioral responses and would not be expected to disrupt this predator–prey–plant interaction as part of an integrated pest management strategy. ABSTRACT: Microbes have the potential to affect multitrophic plant–insect–predator interactions. We examined whether cotton plants treated with potentially beneficial fungi affect interactions between cotton aphids Aphis gossypii and predatory lady beetles Hippodamia convergens. We used Y-tube olfactometer assays to test lady beetle behavioral responses to stimuli emitted by aphid-infested and non-infested cotton plants grown from seeds treated with either Phialemonium inflatum (TAMU490) or Chaetomium globosum (TAMU520) versus untreated control plants. We tested a total of 960 lady beetles (480 males and 480 females) that had been deprived of food for approximately 24 h. In the absence of any fungal treatments, males preferred stimuli from aphid-infested plants, and females spent more time associated with stimuli from aphid-infested versus non-infested plants. When fungal treatments were added, we observed that lady beetles preferred non-aphid-infested P. inflatum plants, and males responded slower to plants treated with P. inflatum in the absence of aphids. We found some evidence to suggest that lady beetle behavioral responses to plants might vary according to the fungal treatment but not strongly impact their use as part of an insect pest management strategy. |
---|