Cargando…

Silver Nanofunctionalized Stent after Radiofrequency Ablation Suppresses Tissue Hyperplasia and Bacterial Growth

Intraductal radiofrequency (RF) ablation combined with placement of a self-expandable metal stent (SEMS) for malignant biliary obstruction has risks such as stent- and heat-induced biliary sludge and restenosis. Here, we investigated the efficacy of a silver nanoparticles (AgNPs)-coated SEMS to inhi...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Yubeen, Won, Dong-Sung, Bae, Ga-Hyun, Ryu, Dae Sung, Kang, Jeon Min, Kim, Ji Won, Kim, Song Hee, Zeng, Chu Hui, Park, Wooram, Lee, Sang Soo, Park, Jung-Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876892/
https://www.ncbi.nlm.nih.gov/pubmed/35214144
http://dx.doi.org/10.3390/pharmaceutics14020412
Descripción
Sumario:Intraductal radiofrequency (RF) ablation combined with placement of a self-expandable metal stent (SEMS) for malignant biliary obstruction has risks such as stent- and heat-induced biliary sludge and restenosis. Here, we investigated the efficacy of a silver nanoparticles (AgNPs)-coated SEMS to inhibit tissue hyperplasia and bacterial growth caused by RF ablation with stent placement in the rabbit bile duct. The release behavior and antibacterial effects of AgNPs-coated SEMSs were evaluated. Then, SEMSs were successfully placed in all rabbits immediately after RF ablation. Ag ions were rapidly released at the beginning and then showed a gradual release behavior. The AgNPs-coated SEMS significantly inhibited bacterial activity compared to the uncoated SEMS (p < 0.05). Cholangiography and histological examination confirmed that the level of tissue hyperplasia was significantly lower in the AgNPs group than in the control group (all p < 0.05). Immunohistochemistry analyses revealed that TUNEL-, HSP 70-, and α-SMA-positive areas were significantly lower in the AgNPs group than in the control group (all p < 0.05). Intraductal RF ablation combined with nanofunctionalized stent placement represents a promising new approach for suppressing thermal damage as well as stent-induced tissue hyperplasia and bacterial growth.