Cargando…
Propylsulfonic Acid-Functionalized Mesostructured Natural Rubber/Silica Nanocomposites as Promising Hydrophobic Solid Catalysts for Alkyl Levulinate Synthesis
Organosulfonic acid-functionalized mesoporous silica is a class of heterogeneous acid catalysts used in esterification processes due to its high surface area, shape-selective properties, and strongly acidic sites. Since water is generated as a by-product of esterification, the surface of mesostructu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877181/ https://www.ncbi.nlm.nih.gov/pubmed/35214933 http://dx.doi.org/10.3390/nano12040604 |
Sumario: | Organosulfonic acid-functionalized mesoporous silica is a class of heterogeneous acid catalysts used in esterification processes due to its high surface area, shape-selective properties, and strongly acidic sites. Since water is generated as a by-product of esterification, the surface of mesostructured silica is modified to enhance hydrophobicity and catalytic performance. In this study, a series of propylsulfonic acid-functionalized nanocomposites based on natural rubber and hexagonal mesoporous silica (NRHMS-SO(3)H) with different acidities were prepared via an in situ sol-gel process using tetraethyl orthosilicate as the silica source, dodecylamine as the nonionic templating agent, and (3-mercaptopropyl)trimethoxysilane as the acid-functional group precursor. Compared with conventional propylsulfonic acid-functionalized hexagonal mesoporous silica (HMS-SO(3)H), NRHMS-SO(3)H provided higher hydrophobicity, while retaining mesoporosity and high surface area. The catalytic activity of synthesized solid acids was then evaluated via batch esterification of levulinic acid (LA) with alcohols (ethanol, n-propanol, and n-butanol) to produce alkyl levulinate esters. NRHMS-SO(3)H exhibited higher catalytic activity than HMS-SO(3)H and ultra-stable Y (HUSY) zeolite owing to the synergistic effect between the strongly acidic-functional group and surface hydrophobicity. The activation energy of the reaction over the NRHMS-SO(3)H surface was lower than that of HUSY and HMS-SO(3)H, suggesting that tuning the hydrophobicity and acidity on a nanocomposite surface is a compelling strategy for energy reduction to promote catalysis. |
---|