Cargando…
Three Frequency Up-Converting Piezoelectric Energy Harvesters Caused by Internal Resonance Mechanism: A Narrative Review
Low frequency mechanical vibrations are ubiquitous in practical environments, and how to efficiently harvest them with piezoelectric materials remains a challenge. Frequency up-conversion strategies—up-converting low frequency vibrations to high frequency self-oscillations—can improve the power dens...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877200/ https://www.ncbi.nlm.nih.gov/pubmed/35208332 http://dx.doi.org/10.3390/mi13020210 |
Sumario: | Low frequency mechanical vibrations are ubiquitous in practical environments, and how to efficiently harvest them with piezoelectric materials remains a challenge. Frequency up-conversion strategies—up-converting low frequency vibrations to high frequency self-oscillations—can improve the power density of piezoelectric materials. This paper mainly introduces a kind of frequency which up-converts piezoelectric energy harvesters based on an internal resonance mechanism, compared with the other mechanisms caused by mechanical impact, mechanical plucking, etc.; the internal resonance-based harvesters can up-convert the frequency under a condition of lower excitation level, less energy loss, and less wideband operation bandwidth. Benefits to practical vibrations also exist in these multi-degree-of-freedom nonlinear dynamic systems. Moreover, the value of the frequency up-conversion factor based on the 1:2:6 internal resonance mechanism can reach as much as six so far, which is also a quite a high frequency up-conversion value. |
---|