Cargando…
TransDiscovery: Discovering Biotransformation from Human Microbiota by Integrating Metagenomic and Metabolomic Data
The human microbiome is a complex community of microorganisms, their enzymes, and the molecules they produce or modify. Recent studies show that imbalances in human microbial ecosystems can cause disease. Our microbiome affects our health through the products of biochemical reactions catalyzed by mi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877437/ https://www.ncbi.nlm.nih.gov/pubmed/35208194 http://dx.doi.org/10.3390/metabo12020119 |
Sumario: | The human microbiome is a complex community of microorganisms, their enzymes, and the molecules they produce or modify. Recent studies show that imbalances in human microbial ecosystems can cause disease. Our microbiome affects our health through the products of biochemical reactions catalyzed by microbial enzymes (microbial biotransformations). Despite their significance, currently, there are no systematic strategies for identifying these chemical reactions, their substrates and molecular products, and their effects on health and disease. We present TransDiscovery, a computational algorithm that integrates molecular networks (connecting related molecules with similar mass spectra), association networks (connecting co-occurring molecules and microbes) and knowledge bases of microbial enzymes to discover microbial biotransformations, their substrates, and their products. After searching the metabolomics and metagenomics data from the American Gut Project and the Global Foodomic Project, TranDiscovery identified 17 potentially novel biotransformations from the human gut microbiome, along with the corresponding microbial species, substrates, and products. |
---|