Cargando…
Hyperspectral Image Labeling and Classification Using an Ensemble Semi-Supervised Machine Learning Approach
Hyperspectral remote sensing has tremendous potential for monitoring land cover and water bodies from the rich spatial and spectral information contained in the images. It is a time and resource consuming task to obtain groundtruth data for these images by field sampling. A semi-supervised method fo...
Autores principales: | Manian, Vidya, Alfaro-Mejía, Estefanía, Tokars, Roger P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877511/ https://www.ncbi.nlm.nih.gov/pubmed/35214523 http://dx.doi.org/10.3390/s22041623 |
Ejemplares similares
-
Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification
por: Orozco, Jairo, et al.
Publicado: (2023) -
Semi-supervised multi-label collective classification ensemble for functional genomics
por: Wu, Qingyao, et al.
Publicado: (2014) -
Nondestructive Classification of Soybean Seed Varieties by Hyperspectral Imaging and Ensemble Machine Learning Algorithms
por: Wei, Yanlin, et al.
Publicado: (2020) -
A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification
por: Peikari, Mohammad, et al.
Publicado: (2018) -
Supervised Machine Learning Methods and Hyperspectral Imaging Techniques Jointly Applied for Brain Cancer Classification
por: Urbanos, Gemma, et al.
Publicado: (2021)