Cargando…
MEMS Skin Friction Sensor with High Response Frequency and Large Measurement Range
Micro-electromechanical system (MEMS) skin friction sensors are considered to be promising sensors in hypersonic wind tunnel experiments owing to their miniature size, high sensitivity, and stability. Aiming at the problem of short test duration (a few milliseconds) and heavy load in a shock wind tu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877609/ https://www.ncbi.nlm.nih.gov/pubmed/35208358 http://dx.doi.org/10.3390/mi13020234 |
Sumario: | Micro-electromechanical system (MEMS) skin friction sensors are considered to be promising sensors in hypersonic wind tunnel experiments owing to their miniature size, high sensitivity, and stability. Aiming at the problem of short test duration (a few milliseconds) and heavy load in a shock wind tunnel, the fast readout circuit and the sensor head structures of a MEMS skin friction sensor are presented and optimized in this work. The sensor was fabricated using various micro-mechanical processes and micro-assembly technology based on visual alignment. Meanwhile, the sensor head structure was integrated with the fast readout circuit and tested by using a centrifugal force equivalent method. The calibration results show that this sensor provides good linearity, sensitivity, and stability. The measurement ranges are 0–2000 Pa with good performance. The resolution is better than 10 Pa at 3000 Hz detection frequency of the readout circuit for the sensor in ranges from 0 to 1000 Pa. In addition, the repeatability and linearity of static calibration for sensors are better than 1%. |
---|