Cargando…
An Outperforming Artificial Intelligence Model to Identify Referable Blepharoptosis for General Practitioners
The aim of this study is to develop an AI model that accurately identifies referable blepharoptosis automatically and to compare the AI model’s performance to a group of non-ophthalmic physicians. In total, 1000 retrospective single-eye images from tertiary oculoplastic clinics were labeled by three...
Autores principales: | Hung, Ju-Yi, Chen, Ke-Wei, Perera, Chandrashan, Chiu, Hsu-Kuang, Hsu, Cherng-Ru, Myung, David, Luo, An-Chun, Fuh, Chiou-Shann, Liao, Shu-Lang, Kossler, Andrea Lora |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877622/ https://www.ncbi.nlm.nih.gov/pubmed/35207771 http://dx.doi.org/10.3390/jpm12020283 |
Ejemplares similares
-
Acquired progressive unilateral blepharoptosis
por: Manjandavida, Fairooz P, et al.
Publicado: (2019) -
Biological learning curves outperform existing ones in artificial intelligence algorithms
por: Uzan, Herut, et al.
Publicado: (2019) -
Artificial intelligence with temporal features outperforms machine learning in predicting diabetes
por: Naveed, Iqra, et al.
Publicado: (2023) -
Tarsoaponeurectomy as an alternative in difficult blepharoptosis cases
por: Sendul, Selam Yekta, et al.
Publicado: (2016) -
Predicting Systemic Health Features from Retinal Fundus Images Using Transfer-Learning-Based Artificial Intelligence Models
por: Khan, Nergis C., et al.
Publicado: (2022)