Cargando…
Identification of New Natural Sources of Flavour and Aroma Metabolites from Solid-State Fermentation of Agro-Industrial By-Products
Increasing consumer demand for natural flavours and fragrances has driven up prices and increased pressure on natural resources. A shift in consumer preference towards more sustainable and economical sources of these natural additives and away from synthetic production has encouraged research into a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877680/ https://www.ncbi.nlm.nih.gov/pubmed/35208231 http://dx.doi.org/10.3390/metabo12020157 |
Sumario: | Increasing consumer demand for natural flavours and fragrances has driven up prices and increased pressure on natural resources. A shift in consumer preference towards more sustainable and economical sources of these natural additives and away from synthetic production has encouraged research into alternative supplies of these valuable compounds. Solid-state fermentation processes support the natural production of secondary metabolites, which represents most flavour and aroma compounds, while agro-industrial by-products are a low-value waste stream with a high potential for adding value. Accordingly, four filamentous fungi species with a history of use in the production of fermented foods and food additives were tested to ferment nine different agro-industrial by-products. Hundreds of volatile compounds were produced and identified using headspace (HS) solid-phase microextraction (SPME) coupled to gas chromatography–mass spectrometry (GC–MS). Four compounds of interest, phenylacetaldehyde, methyl benzoate, 1-octen-3-ol, and phenylethyl alcohol, were extracted and quantified. Preliminary yields were encouraging compared to traditional sources. This, combined with the low-cost substrates and the high-value natural flavours and aromas produced, presents a compelling case for further optimisation of the process. |
---|