Cargando…
A Quality Control Methodology for Heterogeneous Vehicular Data Streams
The rapid evolution of sensors and communication technologies has led to the production and transfer of mass data streams from vehicles either inside their electronic units or to the outside world using the internet infrastructure. The “outside world”, in most cases, consists of third-party applicat...
Autores principales: | Remoundou, Konstantina, Alexakis, Theodoros, Peppes, Nikolaos, Demestichas, Konstantinos, Adamopoulou, Evgenia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877783/ https://www.ncbi.nlm.nih.gov/pubmed/35214486 http://dx.doi.org/10.3390/s22041550 |
Ejemplares similares
-
Driving Behaviour Analysis Using Machine and Deep Learning Methods for Continuous Streams of Vehicular Data
por: Peppes, Nikolaos, et al.
Publicado: (2021) -
Applications of Fusion Techniques in E-Commerce Environments: A Literature Review
por: Daskalakis, Emmanouil, et al.
Publicado: (2022) -
A Distributed Big Data Analytics Architecture for Vehicle Sensor Data
por: Alexakis, Theodoros, et al.
Publicado: (2022) -
The Effectiveness of Zero-Day Attacks Data Samples Generated via GANs on Deep Learning Classifiers
por: Peppes, Nikolaos, et al.
Publicado: (2023) -
Performance of Machine Learning-Based Multi-Model Voting Ensemble Methods for Network Threat Detection in Agriculture 4.0
por: Peppes, Nikolaos, et al.
Publicado: (2021)