Cargando…
HRGAN: A Generative Adversarial Network Producing Higher-Resolution Images than Training Sets
The generative adversarial network (GAN) has demonstrated superb performance in generating synthetic images in recent studies. However, in the conventional framework of GAN, the maximum resolution of generated images is limited to the resolution of real images that are used as the training set. In t...
Autores principales: | Park, Minyoung, Lee, Minhyeok, Yu, Sungwook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877944/ https://www.ncbi.nlm.nih.gov/pubmed/35214337 http://dx.doi.org/10.3390/s22041435 |
Ejemplares similares
-
Estimation with Uncertainty via Conditional Generative Adversarial Networks
por: Lee, Minhyeok, et al.
Publicado: (2021) -
Improving Image Super-Resolution Based on Multiscale Generative Adversarial Networks
por: Yuan, Cao, et al.
Publicado: (2022) -
A new generative adversarial network for medical images super resolution
por: Ahmad, Waqar, et al.
Publicado: (2022) -
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021) -
Improving Image-Based Plant Disease Classification With Generative Adversarial Network Under Limited Training Set
por: Bi, Luning, et al.
Publicado: (2020)