Cargando…
An Ionically Conductive, Self-Powered and Stable Organogel for Pressure Sensing
Gel-based ionic conductors are promising candidates for flexible electronics, serving as stretchable sensors or electrodes. However, most of them suffer from a short operating life, low conductivity and rely on an external power supply, limiting their practical application. Herein, we report a stabl...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878061/ https://www.ncbi.nlm.nih.gov/pubmed/35215042 http://dx.doi.org/10.3390/nano12040714 |
Sumario: | Gel-based ionic conductors are promising candidates for flexible electronics, serving as stretchable sensors or electrodes. However, most of them suffer from a short operating life, low conductivity and rely on an external power supply, limiting their practical application. Herein, we report a stable organogel ionic conductor with high conductivity and self-powering ability. Briefly, lithium trifluoromethanesulfonate, as a conductive salt, provides high conductivity and the poly(1,1-difluoroethylene) layers, as a self-powering system, supply stable energy output under the influence of pressure. Moreover, the proposed conductors withstand long-term and multi-cycle durability tests. The prepared auxiliary training device can withstand the impact of a basketball and detect the impact force, showing potential in passive sensing during practical applications. |
---|