Cargando…
Synapse-Neuron-Aware Training Scheme of Defect-Tolerant Neural Networks with Defective Memristor Crossbars
To overcome the limitations of CMOS digital systems, emerging computing circuits such as memristor crossbars have been investigated as potential candidates for significantly increasing the speed and energy efficiency of next-generation computing systems, which are required for implementing future AI...
Autores principales: | An, Jiyong, Oh, Seokjin, Nguyen, Tien Van, Min, Kyeong-Sik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878212/ https://www.ncbi.nlm.nih.gov/pubmed/35208396 http://dx.doi.org/10.3390/mi13020273 |
Ejemplares similares
-
Area-Efficient Mapping of Convolutional Neural Networks to Memristor Crossbars Using Sub-Image Partitioning
por: Oh, Seokjin, et al.
Publicado: (2023) -
Partial-Gated Memristor Crossbar for Fast and Power-Efficient Defect-Tolerant Training
por: Pham, Khoa Van, et al.
Publicado: (2019) -
Memristor-CMOS Hybrid Neuron Circuit with Nonideal-Effect Correction Related to Parasitic Resistance for Binary-Memristor-Crossbar Neural Networks
por: Nguyen, Tien Van, et al.
Publicado: (2021) -
Memristor Crossbar Circuits Implementing Equilibrium Propagation for On-Device Learning
por: Oh, Seokjin, et al.
Publicado: (2023) -
Asymmetrical Training Scheme of Binary-Memristor-Crossbar-Based Neural Networks for Energy-Efficient Edge-Computing Nanoscale Systems
por: Pham, Khoa Van, et al.
Publicado: (2019)