Cargando…
A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran
We mapped landslide susceptibility in Kamyaran city of Kurdistan Province, Iran, using a robust deep-learning (DP) model based on a combination of extreme learning machine (ELM), deep belief network (DBN), back propagation (BP), and genetic algorithm (GA). A total of 118 landslide locations were rec...
Autores principales: | Ghasemian, Bahareh, Shahabi, Himan, Shirzadi, Ataollah, Al-Ansari, Nadhir, Jaafari, Abolfazl, Kress, Victoria R., Geertsema, Marten, Renoud, Somayeh, Ahmad, Anuar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878333/ https://www.ncbi.nlm.nih.gov/pubmed/35214473 http://dx.doi.org/10.3390/s22041573 |
Ejemplares similares
-
Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
por: Shirzadi, Ataollah, et al.
Publicado: (2018) -
Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM(+) Images
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment
por: Shahabi, Himan, et al.
Publicado: (2015)