Cargando…
Impact Position Estimation for Baseball Batting with a Force-Irrelevant Vibration Feature
In this work we propose a novel method for impact position estimation during baseball batting, which is independent of impact intensity, i.e., force-irrelevant. In our experiments, we mount a piezoelectric vibration sensor on the knob of a wooden bat to record: (1) 3600 vibration signals (waveforms)...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878515/ https://www.ncbi.nlm.nih.gov/pubmed/35214454 http://dx.doi.org/10.3390/s22041553 |
_version_ | 1784658678663610368 |
---|---|
author | Chen, Wei-Han Feng, Yang-Chih Yeh, Ming-Chia Ma, Hsi-Pin Liu, Chiang Wu, Cheng-Wen |
author_facet | Chen, Wei-Han Feng, Yang-Chih Yeh, Ming-Chia Ma, Hsi-Pin Liu, Chiang Wu, Cheng-Wen |
author_sort | Chen, Wei-Han |
collection | PubMed |
description | In this work we propose a novel method for impact position estimation during baseball batting, which is independent of impact intensity, i.e., force-irrelevant. In our experiments, we mount a piezoelectric vibration sensor on the knob of a wooden bat to record: (1) 3600 vibration signals (waveforms) from ball–bat impacts in the static experiment—30 impacts from each of 40 positions (distributed 1–40 cm from the end of the barrel) and 3 intensities (drop heights at 75, 100, and 125 cm, resp.), and (2) 45 vibration signals from actual battings by three baseball players in the dynamic experiment. The results show that the peak amplitude of the signal in the time domain, and the peaks of the first, second, and third eigenfrequencies (EFs) of the bat all increase with the impact intensity. However, the ratios of peaks at these three EFs (1st/2nd, 2nd/3rd, and 1st/3rd) hardly change with the impact intensity, and the observation is consistent for both the static and dynamic experiments across all impact positions. In conclusion, we have observed that the ratios of peaks at the first three EFs are a force-irrelevant feature, which can be used to estimate the impact position in baseball batting. |
format | Online Article Text |
id | pubmed-8878515 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88785152022-02-26 Impact Position Estimation for Baseball Batting with a Force-Irrelevant Vibration Feature Chen, Wei-Han Feng, Yang-Chih Yeh, Ming-Chia Ma, Hsi-Pin Liu, Chiang Wu, Cheng-Wen Sensors (Basel) Article In this work we propose a novel method for impact position estimation during baseball batting, which is independent of impact intensity, i.e., force-irrelevant. In our experiments, we mount a piezoelectric vibration sensor on the knob of a wooden bat to record: (1) 3600 vibration signals (waveforms) from ball–bat impacts in the static experiment—30 impacts from each of 40 positions (distributed 1–40 cm from the end of the barrel) and 3 intensities (drop heights at 75, 100, and 125 cm, resp.), and (2) 45 vibration signals from actual battings by three baseball players in the dynamic experiment. The results show that the peak amplitude of the signal in the time domain, and the peaks of the first, second, and third eigenfrequencies (EFs) of the bat all increase with the impact intensity. However, the ratios of peaks at these three EFs (1st/2nd, 2nd/3rd, and 1st/3rd) hardly change with the impact intensity, and the observation is consistent for both the static and dynamic experiments across all impact positions. In conclusion, we have observed that the ratios of peaks at the first three EFs are a force-irrelevant feature, which can be used to estimate the impact position in baseball batting. MDPI 2022-02-17 /pmc/articles/PMC8878515/ /pubmed/35214454 http://dx.doi.org/10.3390/s22041553 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Wei-Han Feng, Yang-Chih Yeh, Ming-Chia Ma, Hsi-Pin Liu, Chiang Wu, Cheng-Wen Impact Position Estimation for Baseball Batting with a Force-Irrelevant Vibration Feature |
title | Impact Position Estimation for Baseball Batting with a Force-Irrelevant Vibration Feature |
title_full | Impact Position Estimation for Baseball Batting with a Force-Irrelevant Vibration Feature |
title_fullStr | Impact Position Estimation for Baseball Batting with a Force-Irrelevant Vibration Feature |
title_full_unstemmed | Impact Position Estimation for Baseball Batting with a Force-Irrelevant Vibration Feature |
title_short | Impact Position Estimation for Baseball Batting with a Force-Irrelevant Vibration Feature |
title_sort | impact position estimation for baseball batting with a force-irrelevant vibration feature |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878515/ https://www.ncbi.nlm.nih.gov/pubmed/35214454 http://dx.doi.org/10.3390/s22041553 |
work_keys_str_mv | AT chenweihan impactpositionestimationforbaseballbattingwithaforceirrelevantvibrationfeature AT fengyangchih impactpositionestimationforbaseballbattingwithaforceirrelevantvibrationfeature AT yehmingchia impactpositionestimationforbaseballbattingwithaforceirrelevantvibrationfeature AT mahsipin impactpositionestimationforbaseballbattingwithaforceirrelevantvibrationfeature AT liuchiang impactpositionestimationforbaseballbattingwithaforceirrelevantvibrationfeature AT wuchengwen impactpositionestimationforbaseballbattingwithaforceirrelevantvibrationfeature |