Cargando…

Facile Synthesis of Magnetic Biochar Derived from Burley Tobacco Stems towards Enhanced Cr(VI) Removal: Performance and Mechanism

In this study, ferric-loaded magnetic burley tobacco stem biochar (MBTS) was synthesized via pyrolysis to improve the removal of Cr(VI). The results showed that MBTS had an adsorption capacity of 54.92 mg Cr(VI)/g, which was about 14 times higher than raw burley tobacco stem biochar (i.e., 3.84 mg/g...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Baihui, Chen, Zhihua, Wang, Feihua, Zhang, Zihan, Dai, Yanran, Guo, Dabin, Liang, Wei, Liu, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878553/
https://www.ncbi.nlm.nih.gov/pubmed/35215006
http://dx.doi.org/10.3390/nano12040678
Descripción
Sumario:In this study, ferric-loaded magnetic burley tobacco stem biochar (MBTS) was synthesized via pyrolysis to improve the removal of Cr(VI). The results showed that MBTS had an adsorption capacity of 54.92 mg Cr(VI)/g, which was about 14 times higher than raw burley tobacco stem biochar (i.e., 3.84 mg/g). According to the findings obtained, a three-step mechanism of Cr(VI) removal by MBTS was further put forward, i.e., (1) Cr(VI) exchanged with hydroxyl groups on MBTS, (2) the reduction in Cr(VI) to Cr(III) mediated by oxygen-containing groups, and (3) the chelation of produced Cr(III) with the amino groups on MBTS. FTIR spectra further revealed that C-N, C-H, and C=C groups played an important role in Cr(VI) removal. Furthermore, the adsorption equilibrium and kinetics of Cr(VI) on MBTS could better be described by the Langmuir equation and pseudo-second-order rate equation. This study clearly demonstrated that ferric-loaded biochar derived from burley tobacco stems could serve as a cost-effective magnetic adsorbent for the high-efficiency removal of soluble Cr(VI) from wastewater. Tobacco stem-adsorbed Cr(VI) realized a green path for treating waste by waste.