Cargando…

The Joint Effects of Acoustic and Linguistic Markers for Early Identification of Mild Cognitive Impairment

In recent years, behavioral markers such as spoken language and lexical preferences have been studied in the early detection of mild cognitive impairment (MCI) using conversations. While the combination of linguistic and acoustic signals have been shown to be effective in detecting MCI, they have ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Fengyi, Chen, Jun, Dodge, Hiroko H., Zhou, Jiayu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878676/
https://www.ncbi.nlm.nih.gov/pubmed/35224534
http://dx.doi.org/10.3389/fdgth.2021.702772
Descripción
Sumario:In recent years, behavioral markers such as spoken language and lexical preferences have been studied in the early detection of mild cognitive impairment (MCI) using conversations. While the combination of linguistic and acoustic signals have been shown to be effective in detecting MCI, they have generally been restricted to structured conversations in which the interviewee responds to fixed prompts. In this study, we show that linguistic and acoustic features can be combined synergistically to identify MCI in semi-structured conversations. Using conversational data from an on-going clinical trial (Clinicaltrials.gov: NCT02871921), we find that the combination of linguistic and acoustic features on semi-structured conversations achieves a mean AUC of 82.7, significantly (p < 0.01) out-performing linguistic-only (74.9 mean AUC) or acoustic-only (65.0 mean AUC) detections on hold-out data. Additionally, features (linguistic, acoustic and combination) obtained from semi-structured conversations outperform their counterparts obtained from structured weekly conversations in identifying MCI. Some linguistic categories are significantly better at predicting MCI status (e.g., death, home) than others.