Cargando…
Resource Allocation in Spectrum Access System Using Multi-Objective Optimization Methods
The paradigm of dynamic shared access aims to provide flexible spectrum usage. Recently, Federal Communications Commission (FCC) has proposed a new dynamic spectrum management framework for the sharing of a 3.5 GHz (3550–3700 MHz) federal band, called a citizen broadband radio service (CBRS) band, w...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878853/ https://www.ncbi.nlm.nih.gov/pubmed/35214219 http://dx.doi.org/10.3390/s22041318 |
Sumario: | The paradigm of dynamic shared access aims to provide flexible spectrum usage. Recently, Federal Communications Commission (FCC) has proposed a new dynamic spectrum management framework for the sharing of a 3.5 GHz (3550–3700 MHz) federal band, called a citizen broadband radio service (CBRS) band, which is governed by spectrum access system (SAS). It is the responsibility of SAS to manage the set of CBRS-SAS users. The set of users are classified in three tiers: incumbent access (IA) users, primary access license (PAL) users and the general authorized access (GAA) users. In this article, dynamic channel assignment algorithm for PAL and GAA users is designed with the goal of maximizing the transmission rate and minimizing the total cost of GAA users accessing PAL reserved channels. We proposed a new mathematical model based on multi-objective optimization for the selection of PAL operators and idle PAL reserved channels allocation to GAA users considering the diversity of PAL reserved channels’ attributes and the diversification of GAA users’ business needs. The proposed model is estimated and validated on various performance metrics through extensive simulations and compared with existing algorithms such as Hungarian algorithm, auction algorithm and Gale–Shapley algorithm. The proposed model results indicate that overall transmission rate, net cost and data-rate per unit cost remain the same in comparison to the classical Hungarian method and auction algorithm. However, the improved model solves the resource allocation problem approximately up to four times faster with better load management, which validates the efficiency of our model. |
---|