Cargando…
Dynamics of Tri-Hybrid Nanoparticles in the Rheology of Pseudo-Plastic Liquid with Dufour and Soret Effects
The rheology of different materials at the micro and macro levels is an area of great interest to many researchers, due to its important physical significance. Past experimental studies have proved the efficiency of the utilization of nanoparticles in different mechanisms for the purpose of boosting...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878877/ https://www.ncbi.nlm.nih.gov/pubmed/35208325 http://dx.doi.org/10.3390/mi13020201 |
_version_ | 1784658765128138752 |
---|---|
author | Hou, Enran Wang, Fuzhang Nazir, Umar Sohail, Muhammad Jabbar, Noman Thounthong, Phatiphat |
author_facet | Hou, Enran Wang, Fuzhang Nazir, Umar Sohail, Muhammad Jabbar, Noman Thounthong, Phatiphat |
author_sort | Hou, Enran |
collection | PubMed |
description | The rheology of different materials at the micro and macro levels is an area of great interest to many researchers, due to its important physical significance. Past experimental studies have proved the efficiency of the utilization of nanoparticles in different mechanisms for the purpose of boosting the heat transportation rate. The purpose of this study is to investigate heat and mass transport in a pseudo-plastic model past over a stretched porous surface in the presence of the Soret and Dufour effects. The involvement of tri-hybrid nanoparticles was incorporated into the pseudo-plastic model to enhance the heat transfer rate, and the transport problem of thermal energy and solute mechanisms was modelled considering the heat generation/absorption and the chemical reaction. Furthermore, traditional Fourier and Fick’s laws were engaged in the thermal and solute transportation. The physical model was developed upon Cartesian coordinates, and boundary layer theory was utilized in the simplification of the modelled problem, which appears in the form of coupled partial differential equations systems (PDEs). The modelled PDEs were transformed into corresponding ordinary differential equations systems (ODEs) by engaging the appropriate similarity transformation, and the converted ODEs were solved numerically via a Finite Element Procedure (FEP). The obtained solution was plotted against numerous emerging parameters. In addition, a grid independent survey is presented. We recorded that the temperature of the tri-hybrid nanoparticles was significantly higher than the fluid temperature. Augmenting the values of the Dufour number had a similar comportment on the fluid temperature and concentration. The fluid temperature increased against a higher estimation of the heat generation parameter and the Eckert numbers. The impacts of the buoyancy force parameter and the porosity parameter were quite opposite on the fluid velocity. |
format | Online Article Text |
id | pubmed-8878877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88788772022-02-26 Dynamics of Tri-Hybrid Nanoparticles in the Rheology of Pseudo-Plastic Liquid with Dufour and Soret Effects Hou, Enran Wang, Fuzhang Nazir, Umar Sohail, Muhammad Jabbar, Noman Thounthong, Phatiphat Micromachines (Basel) Article The rheology of different materials at the micro and macro levels is an area of great interest to many researchers, due to its important physical significance. Past experimental studies have proved the efficiency of the utilization of nanoparticles in different mechanisms for the purpose of boosting the heat transportation rate. The purpose of this study is to investigate heat and mass transport in a pseudo-plastic model past over a stretched porous surface in the presence of the Soret and Dufour effects. The involvement of tri-hybrid nanoparticles was incorporated into the pseudo-plastic model to enhance the heat transfer rate, and the transport problem of thermal energy and solute mechanisms was modelled considering the heat generation/absorption and the chemical reaction. Furthermore, traditional Fourier and Fick’s laws were engaged in the thermal and solute transportation. The physical model was developed upon Cartesian coordinates, and boundary layer theory was utilized in the simplification of the modelled problem, which appears in the form of coupled partial differential equations systems (PDEs). The modelled PDEs were transformed into corresponding ordinary differential equations systems (ODEs) by engaging the appropriate similarity transformation, and the converted ODEs were solved numerically via a Finite Element Procedure (FEP). The obtained solution was plotted against numerous emerging parameters. In addition, a grid independent survey is presented. We recorded that the temperature of the tri-hybrid nanoparticles was significantly higher than the fluid temperature. Augmenting the values of the Dufour number had a similar comportment on the fluid temperature and concentration. The fluid temperature increased against a higher estimation of the heat generation parameter and the Eckert numbers. The impacts of the buoyancy force parameter and the porosity parameter were quite opposite on the fluid velocity. MDPI 2022-01-27 /pmc/articles/PMC8878877/ /pubmed/35208325 http://dx.doi.org/10.3390/mi13020201 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hou, Enran Wang, Fuzhang Nazir, Umar Sohail, Muhammad Jabbar, Noman Thounthong, Phatiphat Dynamics of Tri-Hybrid Nanoparticles in the Rheology of Pseudo-Plastic Liquid with Dufour and Soret Effects |
title | Dynamics of Tri-Hybrid Nanoparticles in the Rheology of Pseudo-Plastic Liquid with Dufour and Soret Effects |
title_full | Dynamics of Tri-Hybrid Nanoparticles in the Rheology of Pseudo-Plastic Liquid with Dufour and Soret Effects |
title_fullStr | Dynamics of Tri-Hybrid Nanoparticles in the Rheology of Pseudo-Plastic Liquid with Dufour and Soret Effects |
title_full_unstemmed | Dynamics of Tri-Hybrid Nanoparticles in the Rheology of Pseudo-Plastic Liquid with Dufour and Soret Effects |
title_short | Dynamics of Tri-Hybrid Nanoparticles in the Rheology of Pseudo-Plastic Liquid with Dufour and Soret Effects |
title_sort | dynamics of tri-hybrid nanoparticles in the rheology of pseudo-plastic liquid with dufour and soret effects |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878877/ https://www.ncbi.nlm.nih.gov/pubmed/35208325 http://dx.doi.org/10.3390/mi13020201 |
work_keys_str_mv | AT houenran dynamicsoftrihybridnanoparticlesintherheologyofpseudoplasticliquidwithdufourandsoreteffects AT wangfuzhang dynamicsoftrihybridnanoparticlesintherheologyofpseudoplasticliquidwithdufourandsoreteffects AT nazirumar dynamicsoftrihybridnanoparticlesintherheologyofpseudoplasticliquidwithdufourandsoreteffects AT sohailmuhammad dynamicsoftrihybridnanoparticlesintherheologyofpseudoplasticliquidwithdufourandsoreteffects AT jabbarnoman dynamicsoftrihybridnanoparticlesintherheologyofpseudoplasticliquidwithdufourandsoreteffects AT thounthongphatiphat dynamicsoftrihybridnanoparticlesintherheologyofpseudoplasticliquidwithdufourandsoreteffects |