Cargando…
Sharing Studies between 5G IoT Networks and Fixed Service in the 6425–7125 MHz Band with Monte Carlo Simulation Analysis
This work presents sharing studies between 5G networks and point-to-point fixed service in the 6425–7125 MHz band. In this research, we provide simulations of interference from 5G downlink and uplink to fixed service in the frequency band 6425–7125 MHz. We evaluated several scenarios of interference...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878933/ https://www.ncbi.nlm.nih.gov/pubmed/35214489 http://dx.doi.org/10.3390/s22041587 |
Sumario: | This work presents sharing studies between 5G networks and point-to-point fixed service in the 6425–7125 MHz band. In this research, we provide simulations of interference from 5G downlink and uplink to fixed service in the frequency band 6425–7125 MHz. We evaluated several scenarios of interference, which include cross-border scenarios, as well as scenarios of interference within the borders of one administration. The obtained results of this work are presented as protection distance and frequency offsets that are required in order to achieve compatibility between 5G and FS in the 6425–7125 MHz band. The spectrum engineering techniques presented in this research can help different companies and regulatory administrations in their spectrum management and frequency regulation activities and seriously improve the efficiency of implementation for 5G technologies. |
---|