Cargando…
A Plant-Derived Alkanol Induces Teliospore Germination in Sporisorium scitamineum
Sugarcane smut caused by the basidiomycetes fungus Sporisorium scitamineum is a devastating disease for the sugarcane industry worldwide. As the initial step, the smut teliospores germinate on sugarcane buds, and subsequently, the mycelium infects the bud tissues. However, chemical signals that indu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878970/ https://www.ncbi.nlm.nih.gov/pubmed/35205963 http://dx.doi.org/10.3390/jof8020209 |
Sumario: | Sugarcane smut caused by the basidiomycetes fungus Sporisorium scitamineum is a devastating disease for the sugarcane industry worldwide. As the initial step, the smut teliospores germinate on sugarcane buds, and subsequently, the mycelium infects the bud tissues. However, chemical signals that induce spore germination are still unknown. By comparison of the behavior of the teliospores on the buds of both resistant and susceptible varieties, we found that spore germination rates were significantly lower on the buds of resistant cultivars ZZ1, ZZ6, and ZZ9 than on the susceptible varieties GT42 and ROC22. It was found that the levels of hexacosanol and octacosanol were higher on the buds of smut-susceptible varieties than on the smut-resistant varieties. These observations were extended to the smut-resistant and smut-susceptible sub-genetic populations derived from the cross of ROC25 and YZ89-7. In artificial surface assays, we found that hexacosanol and octacosanol promoted smut teliospore germination. Transcriptome analysis of smut teliospores under the induction by octacosanol revealed that genes in the MAPK signaling pathway and fatty acid metabolism were significantly differentially expressed. Overall, our results provide evidence that alkanol plays important roles in smut teliospore germination and thus could be used as a potential marker for smut resistance in sugarcane breeding programs. |
---|