Cargando…
AI-Based Pipeline for Classifying Pediatric Medulloblastoma Using Histopathological and Textural Images
Pediatric medulloblastomas (MBs) are the most common type of malignant brain tumors in children. They are among the most aggressive types of tumors due to their potential for metastasis. Although this disease was initially considered a single disease, pediatric MBs can be considerably heterogeneous....
Autores principales: | Attallah, Omneya, Zaghlool, Shaza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879027/ https://www.ncbi.nlm.nih.gov/pubmed/35207519 http://dx.doi.org/10.3390/life12020232 |
Ejemplares similares
-
MB-AI-His: Histopathological Diagnosis of Pediatric Medulloblastoma and its Subtypes via AI
por: Attallah, Omneya
Publicado: (2021) -
CoMB-Deep: Composite Deep Learning-Based Pipeline for Classifying Childhood Medulloblastoma and Its Classes
por: Attallah, Omneya
Publicado: (2021) -
A computer-aided diagnostic framework for coronavirus diagnosis using texture-based radiomics images
por: Attallah, Omneya
Publicado: (2022) -
ECG-BiCoNet: An ECG-based pipeline for COVID-19 diagnosis using Bi-Layers of deep features integration
por: Attallah, Omneya
Publicado: (2022) -
Breast Cancer Diagnosis Using an Efficient CAD System Based on Multiple Classifiers
por: Ragab, Dina A., et al.
Publicado: (2019)