Cargando…
Classification Efficiency of Pre-Trained Deep CNN Models on Camera Trap Images
This paper presents the evaluation of 36 convolutional neural network (CNN) models, which were trained on the same dataset (ImageNet). The aim of this research was to evaluate the performance of pre-trained models on the binary classification of images in a “real-world” application. The classificati...
Autores principales: | Stančić, Adam, Vyroubal, Vedran, Slijepčević, Vedran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879090/ https://www.ncbi.nlm.nih.gov/pubmed/35200723 http://dx.doi.org/10.3390/jimaging8020020 |
Ejemplares similares
-
Ungulate Detection and Species Classification from Camera Trap Images Using RetinaNet and Faster R-CNN
por: Vecvanags, Alekss, et al.
Publicado: (2022) -
Are Classification Deep Neural Networks Good for Blind Image Watermarking?
por: Vukotić, Vedran, et al.
Publicado: (2020) -
Camera settings and biome influence the accuracy of citizen science approaches to camera trap image classification
por: Egna, Nicole, et al.
Publicado: (2020) -
A Study of Deep CNN-Based Classification of Open and Closed Eyes Using a Visible Light Camera Sensor
por: Kim, Ki Wan, et al.
Publicado: (2017) -
Pre-trained deep learning models for brain MRI image classification
por: Krishnapriya, Srigiri, et al.
Publicado: (2023)