Cargando…
Soil Moisture Content Retrieval from Remote Sensing Data by Artificial Neural Network Based on Sample Optimization
Soil moisture content (SMC) plays an essential role in geoscience research. The SMC can be retrieved using an artificial neural network (ANN) based on remote sensing data. The quantity and quality of samples for ANN training and testing are two critical factors that affect the SMC retrieving results...
Autores principales: | Liu, Qixin, Gu, Xingfa, Chen, Xinran, Mumtaz, Faisal, Liu, Yan, Wang, Chunmei, Yu, Tao, Zhang, Yin, Wang, Dakang, Zhan, Yulin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879226/ https://www.ncbi.nlm.nih.gov/pubmed/35214511 http://dx.doi.org/10.3390/s22041611 |
Ejemplares similares
-
Remotely sensed soil moisture to estimate savannah NDVI
por: Boke-Olén, Niklas, et al.
Publicado: (2018) -
A Long-term Consistent Artificial Intelligence and Remote Sensing-based Soil Moisture Dataset
por: Skulovich, Olya, et al.
Publicado: (2023) -
Multilayer Model in Soil Moisture Content Retrieval Using GNSS Interferometric Reflectometry
por: Li, Jie, et al.
Publicado: (2023) -
Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review
por: Zhang, Dianjun, et al.
Publicado: (2016) -
Estimation of Soil Arsenic Content with Hyperspectral Remote Sensing
por: Wei, Lifei, et al.
Publicado: (2020)