Cargando…
Human Being Detection from UWB NLOS Signals: Accuracy and Generality of Advanced Machine Learning Models
This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles’ materials, and radar–obstacle distances. We e...
Autores principales: | Moro, Gianluca, Di Luca, Federico, Dardari, Davide, Frisoni, Giacomo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879265/ https://www.ncbi.nlm.nih.gov/pubmed/35214558 http://dx.doi.org/10.3390/s22041656 |
Ejemplares similares
-
Environmental Cross-Validation of NLOS Machine Learning Classification/Mitigation with Low-Cost UWB Positioning Systems
por: Barral, Valentín, et al.
Publicado: (2019) -
NLOS Identification and Mitigation Using Low-Cost UWB Devices
por: Barral, Valentín, et al.
Publicado: (2019) -
Design of the UWB Positioning System Simulator for LOS/NLOS Environments
por: Paszek, Krzysztof, et al.
Publicado: (2021) -
NR-UIO: NLOS-Robust UWB-Inertial Odometry Based on Interacting Multiple Model and NLOS Factor Estimation
por: Hyun, Jieum, et al.
Publicado: (2021) -
NLOS Multipath Classification of GNSS Signal Correlation Output Using Machine Learning
por: Suzuki, Taro, et al.
Publicado: (2021)