Cargando…
The Challenge of Data Annotation in Deep Learning—A Case Study on Whole Plant Corn Silage
Recent advances in computer vision are primarily driven by the usage of deep learning, which is known to require large amounts of data, and creating datasets for this purpose is not a trivial task. Larger benchmark datasets often have detailed processes with multiple stages and users with different...
Autores principales: | Rasmussen, Christoffer Bøgelund, Kirk, Kristian, Moeslund, Thomas B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879292/ https://www.ncbi.nlm.nih.gov/pubmed/35214497 http://dx.doi.org/10.3390/s22041596 |
Ejemplares similares
-
Maize Silage Kernel Fragment Estimation Using Deep Learning-Based Object Recognition in Non-Separated Kernel/Stover RGB Images
por: Rasmussen, Christoffer Bøgelund, et al.
Publicado: (2019) -
Effect of Hybrid Type on Fermentation and Nutritional Parameters of Whole Plant Corn Silage
por: Liu, Yue, et al.
Publicado: (2021) -
Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant
por: Shao, Qianjun, et al.
Publicado: (2010) -
Effect of additives and filling methods on whole plant corn silage quality, fermentation characteristics and in situ digestibility
por: Jiao, Ting, et al.
Publicado: (2021) -
Long transportation duration affects nutrient composition, mycotoxins and microbial community in whole-plant corn silage
por: Zhang, Caixia, et al.
Publicado: (2023)