Cargando…

Genotyping Canadian Cyclospora cayetanensis Isolates to Supplement Cyclosporiasis Outbreak Investigations

Cyclospora cayetanensis is an emerging foodborne parasite that causes cyclosporiasis, an enteric disease of humans. Domestically acquired outbreaks have been reported in Canada every spring or summer since 2013. To date, investigations into the potential sources of infection have relied solely on ep...

Descripción completa

Detalles Bibliográficos
Autores principales: Yanta, Christine A., Barta, John R., Corbeil, Antoine, Menan, Hervé, Thivierge, Karine, Needle, Robert, Morshed, Muhammad, Dixon, Brent R., Wasmuth, James D., Guy, Rebecca A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879297/
https://www.ncbi.nlm.nih.gov/pubmed/35208901
http://dx.doi.org/10.3390/microorganisms10020447
Descripción
Sumario:Cyclospora cayetanensis is an emerging foodborne parasite that causes cyclosporiasis, an enteric disease of humans. Domestically acquired outbreaks have been reported in Canada every spring or summer since 2013. To date, investigations into the potential sources of infection have relied solely on epidemiological data. To supplement the epidemiological data with genetic information, we genotyped 169 Canadian cyclosporiasis cases from stool specimens collected from 2010 to 2021 using an existing eight-marker targeted amplicon deep (TADS) scheme specific to C. cayetanensis as previously described by the US Centers for Disease Control and Prevention (CDC). This is the first study to genotype Canadian Cyclospora cayetanensis isolates, and it focuses on evaluating the genotyping performance and genetic clustering. Genotyping information was successfully collected with at least part of one of the markers in the TADS assay for 97.9% of specimens, and 81.1% of cyclosporiasis cases met the minimum requirements to genetically cluster into 20 groups. The performance of the scheme suggests that examining cyclosporiasis cases genetically will be a valuable tool for supplementing epidemiological outbreak investigations and to minimize further infections. Further research is required to expand the number of discriminatory markers to improve genetic clustering.