Cargando…
Machine Learning Prediction of Visual Outcome after Surgical Decompression of Sellar Region Tumors
Introduction: This study aims to develop a machine learning-based model integrating clinical and ophthalmic features to predict visual outcomes after transsphenoidal resection of sellar region tumors. Methods: Adult patients with optic chiasm compression by a sellar region tumor were examined to dev...
Autores principales: | Qiao, Nidan, Ma, Yichen, Chen, Xiaochen, Ye, Zhao, Ye, Hongying, Zhang, Zhaoyun, Wang, Yongfei, Lu, Zhaozeng, Wang, Zhiliang, Xiao, Yiqin, Zhao, Yao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879436/ https://www.ncbi.nlm.nih.gov/pubmed/35207641 http://dx.doi.org/10.3390/jpm12020152 |
Ejemplares similares
-
Deep Learning for Automatically Visual Evoked Potential Classification During Surgical Decompression of Sellar Region Tumors
por: Qiao, Nidan, et al.
Publicado: (2019) -
A systematic review on machine learning in sellar region diseases: quality and reporting items
por: Qiao, Nidan
Publicado: (2019) -
Recommendation to improve the WHO classification of posterior pituitary tumors as a unique entity: evidence from a large case series
por: Qiao, Nidan, et al.
Publicado: (2022) -
Impact of Pituitary Stalk Preservation on Tumor Recurrence/Progression and Surgically Induced Endocrinopathy After Endoscopic Endonasal Resection of Suprasellar Craniopharyngiomas
por: Chen, Zhengyuan, et al.
Publicado: (2021) -
Case Report: Paraganglioma in the sellar region: longitudinal observation and surgical outcome
por: Wang, Yingjie, et al.
Publicado: (2023)