Cargando…

Insights into National Laboratory Newborn Screening and Future Prospects

Newborn screening (NBS) is a group of tests that check all newborns for certain rare conditions, covering several genetic or metabolic disorders. The laboratory NBS is performed through blood testing. However, the conditions that newborn babies are screened for vary from one country to another. Sinc...

Descripción completa

Detalles Bibliográficos
Autor principal: Mujamammi, Ahmed H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879506/
https://www.ncbi.nlm.nih.gov/pubmed/35208595
http://dx.doi.org/10.3390/medicina58020272
Descripción
Sumario:Newborn screening (NBS) is a group of tests that check all newborns for certain rare conditions, covering several genetic or metabolic disorders. The laboratory NBS is performed through blood testing. However, the conditions that newborn babies are screened for vary from one country to another. Since NBS began in the 1960s, technological advances have enabled its expansion to include an increasing number of disorders, and there is a national trend to further expand the NBS program. The use of mass spectrometry (MS) for the diagnosis of inborn errors of metabolism (IEM) obviously helps in the expansion of the screening panels. This technology allows the detection of different metabolic disorders at one run, replacing the use of traditional techniques. Analysis of the targeted pathogenic gene variant is a routine application in the molecular techniques for the NBS program as a confirmatory testing to the positive laboratory screening results. Recently, a lot of molecular investigations, such as next generation sequencing (NGS), have been introduced in the routine NBS program. Nowadays, NGS techniques are widely used in the diagnosis of IMD where its results are rapid, confirmed and reliable, but, due to its uncertainties and the nature of IEM, it necessitates a holistic approach for diagnosis. However, various characteristics found in NGS make it a potentially powerful tool for NBS. A range of disorders can be analyzed with a single assay directly, and samples can reduce costs and can largely be automated. For the implementation of a robust technology such as NGS in a mass NBS program, the main focus should not be just technologically biased; it should also be tested for its long- and short-term impact on the family and the child. The crucial question here is whether large-scale genomic sequencing can provide useful medical information beyond what current NBS is already providing and at what economical and emotional cost? Currently, the topic of newborn genome sequencing as a public health initiative remains argumentative. Thus, this article seeks the answer to the question: NGS for newborn screening- are we there yet?