Cargando…
A Computer Vision-Based Approach for Tick Identification Using Deep Learning Models
SIMPLE SUMMARY: Ticks are ectoparasites of humans, livestock, and wild animals and, as such, they are a nuisance, as well as vectors for disease transmission. Since the risk of tick-borne disease varies with the tick species, tick identification is vitally important in assessing threats. Standard ta...
Autores principales: | Luo, Chu-Yuan, Pearson, Patrick, Xu, Guang, Rich, Stephen M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879515/ https://www.ncbi.nlm.nih.gov/pubmed/35206690 http://dx.doi.org/10.3390/insects13020116 |
Ejemplares similares
-
Borrelia miyamotoi in Human-Biting Ticks, United States, 2013–2019
por: Xu, Guang, et al.
Publicado: (2021) -
Ehrlichia muris in Ixodes cookei Ticks, Northeastern United States, 2016–2017
por: Xu, Guang, et al.
Publicado: (2018) -
Deep Learning in Computer Vision
por: Kudrynski, Krzysztof, et al.
Publicado: (2019) -
Rapid identification of chrysanthemum teas by computer vision and deep learning
por: Liu, Chunlin, et al.
Publicado: (2020) -
Human-Biting Ixodes Ticks and Pathogen Prevalence from California, Oregon, and Washington
por: Xu, Guang, et al.
Publicado: (2019)