Cargando…
Back-Propagation Neural Network Optimized by K-Fold Cross-Validation for Prediction of Torsional Strength of Reinforced Concrete Beam
Due to the limitation of sample size in predicting the torsional strength of Reinforced Concrete (RC) beams, this paper aims to discuss the feasibility of employing a novel machine learning approach with K-fold cross-validation in a small sample range, which combines the advantages of a Genetic Algo...
Autores principales: | Lyu, Zhaoqiu, Yu, Yang, Samali, Bijan, Rashidi, Maria, Mohammadi, Masoud, Nguyen, Thuc N., Nguyen, Andy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879547/ https://www.ncbi.nlm.nih.gov/pubmed/35208015 http://dx.doi.org/10.3390/ma15041477 |
Ejemplares similares
-
Torsion of reinforced concrete /
por: Hsu, Thomas T. C. (Thomas Tseng Chuang), 1933-
Publicado: (1984) -
Multivariable Regression Strength Model for Steel Fiber-Reinforced Concrete Beams under Torsion
por: Deifalla, Ahmed F., et al.
Publicado: (2021) -
A Machine Learning Model for Torsion Strength of Externally Bonded FRP-Reinforced Concrete Beams
por: Deifalla, Ahmed, et al.
Publicado: (2022) -
Improved Equations for the Torsional Strength of Reinforced Concrete Beams for Codes of Practice Based on the Space Truss Analogy
por: Bernardo, Luís F. A., et al.
Publicado: (2022) -
Investigation of ANN architecture for predicting shear strength of fiber reinforcement bars concrete beams
por: Nguyen, Quang Hung, et al.
Publicado: (2021)