Cargando…
Explainable Machine Learning Model for Predicting First-Time Acute Exacerbation in Patients with Chronic Obstructive Pulmonary Disease
Background: The study developed accurate explainable machine learning (ML) models for predicting first-time acute exacerbation of chronic obstructive pulmonary disease (COPD, AECOPD) at an individual level. Methods: We conducted a retrospective case–control study. A total of 606 patients with COPD w...
Autores principales: | Kor, Chew-Teng, Li, Yi-Rong, Lin, Pei-Ru, Lin, Sheng-Hao, Wang, Bing-Yen, Lin, Ching-Hsiung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879653/ https://www.ncbi.nlm.nih.gov/pubmed/35207716 http://dx.doi.org/10.3390/jpm12020228 |
Ejemplares similares
-
Blood monocyte levels predict the risk of acute exacerbations of chronic obstructive pulmonary disease: a retrospective case–control study
por: Lin, Ching-Hsiung, et al.
Publicado: (2022) -
Explainable Machine Learning-Based Risk Prediction Model for In-Hospital Mortality after Continuous Renal Replacement Therapy Initiation
por: Hung, Pei-Shan, et al.
Publicado: (2022) -
The impact of the duration of the integrated disease management program on COPD-related outcomes
por: Lin, Ching-Hsiung, et al.
Publicado: (2023) -
Association of meteorological factors and air NO(2) and O(3) concentrations with acute exacerbation of elderly chronic obstructive pulmonary disease
por: Lin, Ming-Tai, et al.
Publicado: (2018) -
Effectiveness of Nationwide COPD Pay-for-Performance Program on COPD Exacerbations in Taiwan
por: Cheng, Shih-Lung, et al.
Publicado: (2021)